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Performance Measures for Video Object
Segmentation and Tracking
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Abstract—We propose measures to evaluate quantitatively the
performance of video object segmentation and tracking methods
without ground-truth (GT) segmentation maps. The proposed
measures are based on spatial differences of color and motion
along the boundary of the estimated video object plane and
temporal differences between the color histogram of the current
object plane and its predecessors. They can be used to localize
(spatially and/or temporally) regions where segmentation results
are good or bad; and/or they can be combined to yield a single
numerical measure to indicate the goodness of the boundary
segmentation and tracking results over a sequence. The validity
of the proposed performance measures without GT have been
demonstrated by canonical correlation analysis with another set
of measures with GT on a set of sequences (where GT information
is available). Experimental results are presented to evaluate
the segmentation maps obtained from various sequences using
different segmentation approaches.

Index Terms—Canonical correlation analysis, object segmen-
tation, object tracking, performance evaluation without ground
truth (GT).

I. INTRODUCTION

OBJECT-BASED video segmentation and object tracking
are challenging and active research areas in digital

video processing and computer vision. The task of seg-
menting/tracking a video object emerges in many applications
such as object-based video coding (e.g., MPEG-4), con-
tent-based video indexing and retrieval (e.g., MPEG-7), video
surveillance for security, video editing for post production, and
animation for entertainment video.

Comparative assessment of segmentation algorithms is often
based upon subjective judgment, which is qualitative and time
consuming. Therefore, there is a need for an automatic, objec-
tive spatio-temporal methodology, not only for comparison of
overall algorithmic performance, but also as a tool to monitor
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tekalp@ece.rochester.edu; mtekalp@ku.edu.tr).

Digital Object Identifier 10.1109/TIP.2004.828427

spatio-temporal consistency of the segmentation of individual
objects.

Although several measures have been developed for still
image segmentation [1]–[7], they are not directly applicable to
video object segmentation and tracking. Recently, a number
of video segmentation measures have been proposed based on
ground-truth (GT) segmentation maps. For example, Senior et
al. [8] employed trajectories of the centroid of tracked objects
and their velocities. Erdem et al. [9] utilize a combination of
misclassification penalty, shape penalty, and motion penalty
to assess the video object segmentation results. Marichal and
Villegas [10] also use three measures, which are the spatial
accuracy, temporal local stability, and the temporal shift mea-
sures. In their work, the spatial accuracy measure favors the
segmentation algorithms which overestimate the segmentation
masks over the ones which underestimate it. Their temporal
coherency measure utilizes the displacement of the gravity
centers of the estimated and reference segmentation masks.
Correia and Pereira [11] follow a four-step strategy for video
segmentation quality evaluation. First, individual segmentation
quality for each object is measured. Next, the relevance of
each object is computed based on how much visual attention it
captures. Then, similarity of reference and estimated segmen-
tations is computed. Finally, an overall segmentation quality
evaluation is obtained by combining these three measures. The
usefulness of these measures is limited in that they require the
presence of GT information, which is not easily available.

Recently, a set of standalone (without GT) performance
metrics have been proposed by Correia and Pereira [12], [13].
These metrics are grouped into two classes as intra-object
homogeneity measures and inter-object disparity measures. The
intra-object homogeneity metrics are composed of the shape
regularity (based on compactness, circularity, and elongation
properties), spatial uniformity (based on spatial perceptual
information and texture variance), temporal stability (based
on size, elongation, and texture differences), and motion uni-
formity (based on variance of motion vectors and criticality).
The inter-object disparity metrics are composed of local color
and motion contrast with neighbors. The authors demonstrate
through experiments that the proposed measures are able to
estimate segmentation quality in a correlated way with the
judgements of a human observer for different types of content.

The main contribution of our work is to develop quantitative
performance measures for video object tracking and segmen-
tation, which do not require GT segmentation maps, and then
to show statistically that they are indeed correlated with an-
other set of measures based on GT segmentation maps (under
certain assumptions). The proposed nonground-truth (NGT)
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(a) (b) (c)

Fig. 1. (a) Video object plane for the 32nd frame of the “Hall monitor” sequence. (b) The boundary of the video object plane with the normal lines. (c) A closeup
of a normal line drawn on the boundary. The two points “just inside” and “just outside” of the boundary are shown with symbols p and p , respectively.

measures exploit color and motion features in the vicinity of
the segmented video object. One of the features is the spa-
tial color contrast along the boundary of each object plane.
The second one consists of color histogram differences across
video object planes, which aims to evaluate the goodness of
segmentation along a spatio-temporal trajectory. The third fea-
ture is based on motion vector differences along the video
object plane boundary. Often, a single numerical figure does
not suffice to evaluate the goodness of a segmentation/tracking
for a whole video sequence. Since the spatial segmentation
quality can change from frame to frame and/or the temporal
segmentation stability may deteriorate over subsequences, we
propose additional measures to localize in time or in space
the unsuccessful segmentation outcomes.

In Section II, we present color and motion features used in the
performance evaluation measures. An overall performance mea-
sure for the whole sequence, as well as measures to localize per-
formance spatially and temporally, are developed in Section III.
In Section IV, canonical correlation analysis is used to validate
NGT measures against GT measures. In Section V, experimental
results are provided. Finally, in Section VI, conclusive remarks
are given.

II. FEATURES FOR VIDEO SEGMENTATION EVALUATION

The proposed video segmentation performance measures are
based on color and motion features. Color features are based
on the following assumptions: 1) Object boundaries coincide
with color boundaries. 2) The color histogram of the object is
stationary from frame to frame. 3) The color histogram of the
background is different from the color histogram of the object.
These assumptions hold true for most video sequences and are
also assumed by many segmentation algorithms. Note that the
background and its color histogram are not required to be sta-
tionary from frame to frame, and there are also no restrictions
on the shape and rigidity of the segmented/tracked object.

In addition, we make the following assumptions about the
motion of video objects. 1) The motion vectors of the object
that are “just inside” of the object boundary and the background

motion vectors that are “just outside” of the object boundary
are different. In other words, object boundaries coincide with
motion boundaries. 2) The background is either stationary or
has global motion, which can be compensated for.

In the following, we present two color features and one mo-
tion feature, which will be used under the above assumptions
in order to compute the goodness of a segmented video object
plane.

A. Spatial Color Contrast Along Object Boundary

Since object boundaries are assumed to coincide with color
boundaries, there should be an observable difference between
the color of pixels across the estimated object boundary. In order
to measure the color difference, we establish a set of probe
pixels “just inside” and “just outside” by drawing normal lines
of length astride the estimated object boundary at equal in-
tervals as illustrated in Fig. 1(b). As depicted in the closeup in
Fig. 1(c), the color probes are regions centered at the
two ends of the th normal line, which are marked with plus
signs and denoted by (inside pixel) and (outside pixel).

We define the color difference measure calculated along the
boundary of the object in frame as

(1)

(2)

where is the total number of normal lines drawn on the object
boundary in frame and is the average color calculated
in the neighborhood of the pixel using the
Y-Cb-Cr color space. The average inside color is defined
similarly. The worst score is 1 and decreases toward
zero as the color contrast along object boundary increase, pos-
sibly indicating a good segmentation.

We define the color measure for the whole sequence as

(3)
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where is the number of frames in the sequence. The function
can be defined in different ways such as the mean func-

tion, -trimmed mean function [14], median or the maximum
function.

When the location of the object boundary is estimated cor-
rectly in frame , we expect the color measure to take a
small value. However, the converse of this statement is not nec-
essarily true. That is, if the color measure has a small
value in frame , this does not necessarily imply that the object
boundary is located correctly. Therefore, this measure should
be used carefully depending on the characteristics of the back-
ground surrounding the object. This color measure is expected
to be reliable when the object and background textures are not
cluttered and when the color contrast between the object and the
background is high. Note that the color-based measure is appli-
cable to both video and still images.

B. Temporal Color Histogram Difference

The color histogram of the video object planes vary from
frame to frame noticeably if the background is erroneously in-
cluded into the segmentation map or when a portion of the object
is excluded from the segmentation map. A straightforward way
to assess the changes in the color histogram of the segmented
object is to calculate the pairwise color histogram differences
of the video object planes (VOP) at time and . In order to
allow small variations due to self occlusions and mild intensity
variations within the object, a robust scheme should consider
the difference between the color histogram in the present frame
( ) and the smoothed color histogram of the video object planes
over frames . This frame-by-frame histogram
smoothing can be achieved by simple averaging or median fil-
tering of the corresponding histogram bins of VOPs in frames

. However, a drawback of this approach is that
it may not catch a gradual tracking performance deterioration.
Therefore, we can alternatively check the histogram differences
between the reference (e.g., first) VOP and current estimated
VOP. This method penalizes the cumulative difference effect of
the previous approach and is more sensitive.

Let us denote the color histogram of the video object calcu-
lated using the Y-Cb-Cr color space at time as . The ref-
erence color histogram with which is going to be compared
and calculated using one of the methods discussed in the pre-
vious paragraph is denoted by .

In order to estimate the discrepancy between the color his-
tograms and , each with bins, we studied four dif-
ferent measures as described below [15], [16], namely the ,

, and histogram intersection measures.

• The Metric: The distance between the two his-
tograms is calculated and normalized to the range [0, 1]
as follows:

(4)

where the following definitions are used:

The scaling parameters and are used to normalize
the data when the total number of elements in the two
histograms are different. For gray-scale images, is
equal to the object size, and for color images, it is three
times the size of the object.

• The Metric: The distance between the two his-
tograms is calculated and normalized to the range [0, 1]
as follows:

(5)

with the definitions

• The Metric is used to compare two binned data sets,
and to determine if they are drawn from the same distri-
bution function [16]. It is defined and normalized to the
range [0, 1] as follows:

(6)

• Histogram Intersection Measure: To quantify the differ-
ence of the two histograms using the histogram intersec-
tion method, we define the histogram intersection measure
as

(7)

where, determines the number of pixels that
share the same color in the two histograms [17]

(8)

In order to choose the most sensitive histogram differencing
measure, we conducted an experiment in Section V-A, where a
number of GT objects were randomly perturbed and the mean
and variance of the measures were computed. It was observed
that the distance was the most sensitive measure. Therefore,
we use the measure, , in all other
experiments. Note that if the two histograms being compared
are identical, , and increases toward 1, as
the histograms differ more. We define the histogram difference
measure for the whole sequence as

(9)

where the function can be chosen as discussed in the pre-
vious section.
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C. Motion Difference Along Object Boundary

In order to quantify how well the estimated object boundaries
coincide with actual motion boundaries, we adopt the geom-
etry of the probes used for color features as in Fig. 1(b) and (c)
and consider the difference of the average motion vectors in the
neighborhood of the points and . The motion measure for
frame is estimated as follows:

(10)

(11)

(12)

where and denote the average motion vectors
calculated in the square around the points
and , respectively, and denotes the
distance between the two average motion vectors, which is
calculated as

(13)
We observed during the experiments that selecting the param-
eter is reasonable and causes the distance of the motion
vectors to be approximately 0.63, if the magnitude of their dif-
ference is 1. If the sigma is chosen to be larger, then only motion
errors of several pixels would be punished. On the other hand,
choosing a small sigma signifies that fractional motion errors
would be amplified. Since we want to be sensitive to motion di-
crepancies of the order of one pixel or more, the choice of
is adequate. In (12), denotes the reliability of the motion
vector at point [18]

(14)

where denotes the backward motion vector at location
in frame ; denotes the color intensity

and the parameters , are chosen similarly as in [18]. Ac-
cording to the above function, a motion vector at a pixel
position is reliable provided that the backward and forward mo-
tion predictions agree with each other both in magnitude and in
the color of their pixels.

We define the motion measure for the whole sequence as
(again choosing a convenient averaging function)

(15)

There is, however, a caveat for the motion measure. This
score can sometimes be large, not because of any wrong seg-
mentation, but as a consequence of the fact that the object is
not moving significantly during a subsequence. Hence, there
may not exist a clearly definable motion boundary. In such a se-
quel of frames, we should then rely on the persistence of color

Fig. 2. S function.

boundaries, and the coefficient of the the motion score should
be decreased. For example, one can consider a weighting on

as , where is the median of mo-
tion vector magnitudes along the boundary and is the fuzzy
weighting function introduced in (18) and illustrated in Fig. 2.
The midpoint of the ramp can be set at what we define as the
“small motion threshold,” for example, pixels/frame.

III. PERFORMANCE MEASURES WITHOUT GT

In this section, we combine the color and motion measures
to obtain scores that reflect the success of segmentation and
tracking of objects for the whole sequence (Section III-A), as
well as temporal (Section III-B) and spatial localization (Sec-
tion III-C) of incorrect boundary segments.

A. Combined Performance Measure for Sequence

A single numerical measure can be obtained to assess the
performance of spatio-temporal segmentation of a video object
by combining the color and motion measures defined above as
follows:

(16)

where the parameters , , and can be adjusted according to
the characteristics of the video sequence and the relative im-
portance and accuracy of color and motion features. Note that
since the sum is restricted to be one, the measure

takes values between [0, 1]. In the absence of any preference
indication for color and motion, one can consider the straight
arithmetic averaging of the three measures, by simply choosing

, , . Note that, although all the mea-
sures are between [0, 1], their numerical scales may be different,
which may need prior normalization.

Alternative combinations of the three measures may be desir-
able. For example, the given sequence can be judged by

. A more lenient penalty function
would be

(17)
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where is a fuzzy weighting function given by the
curve defined as

(18)

A sample function with parameters , and
is shown in Fig. 2. The combination strategy in (17),

gives more weight to large errors. As one of the three penalties
gets larger, its weight also becomes saturated and vice versa.

For multiple object segmentation, we propose to consider the
overall measure as

(19)

where is defined in (16) for the object ,
and is the number of objects in the video sequence. The
maximum operation has been used because a badly segmented
object may attract enough negative attention causing an unsat-
isfactory subjective judgment, no matter how well the other ob-
jects in a scene are segmented. This approach is based on the
assumption that all objects in the scene are equally important.
If this is not the case, the performance scores of each can be
weighted by an “importance coefficient” and an average of the
object scores can be calculated. A way of estimating such an
“importance coefficient” has been proposed by [13], which dis-
cusses a “contextual relevance metric” of each object based on
its motion, texture, and shape properties. This contextual rele-
vance metric can be adopted as an importance coefficient in our
framework.

Using similar combinations of measures, it is possible to trace
the performance of segmentation over time or in space and, thus,
localize, for example, incorrect boundary segments.

B. Temporal Localization

The temporal performance localization can be achieved by
checking, per frame, color, and motion measures, as a function
of time, that is

(20)

where , , could be determined with a method as in (16)
or (17). In a sequence, any set of frames for which the score
exceeds a threshold is judged to be “poorly segmented.”

C. Spatial Localization

We can further identify incorrectly tracked boundary por-
tions within any frame whose score is above the threshold,
using only the color and motion measures. Thus, rather than
summing the measures along the object boundary, we consider
pixel-individual discrepancies using (2) and (11)

(21)

where is a threshold value. If the threshold is exceeded,
we then mark that segment between points and of
the estimated object boundary as incorrect. This threshold may
be set at sigma point, that is a boundary pixel is considered
as badly segmented if its score in (21) is standard deviations
above the mean of the measure over the object.

IV. STATISTICAL VALIDATION OF PROPOSED MEASURES

In order to check the validity of the proposed NGT perfor-
mance measures, we introduce a canonical correlation analysis
of the proposed measures against measures using GT maps.
To this effect, we first review performance measures using GT
information. The canonical correlation analysis framework
will be discussed next. Experimental results of this correlation
analysis on different sequences with different object segmenta-
tion/tracking approaches will be provided in Section V.

A. Measures With GT

The measures using GT segmentation maps [9] are based on
the pixel misclassification penalty, shape difference penalty, and
the motion penalty. These GT measures are also all normalized
to the range [0, 1] and they are marked with a superscript “g” to
distinguish them from the NGT measures. In order to calculate
the misclassification penalty ( ), the misclassified pixels
in the estimated segmentation map that are farther from the ac-
tual object boundary are penalized more than the misclassified
pixels that are closer to the actual object boundary

(22)

where denotes an indicator function which takes the
value 1 if reference and estimated segmentation masks of the
object differ, denotes the Chamfer distance transform
of the boundary of GT the object. Chamfer distance is a tech-
nique to obtain the distance transform of a binary image which
approximates the Euclidean distance [19].

The shape penalty ( ) between the GT and the esti-
mated segmentation maps are calculated by looking at the dif-
ference between the turning angle functions (TAF) [9] of the
segment boundaries

(23)

where and denote the turning angle function of the
GT and estimated object boundary and is the total number
of points in the TAF. Starting from a point on the boundary,
the turning angle function [20] increases by the amount of the
rotation angle if we turn left and decreases if we turn right. The
total amount of turning angle for any closed shape is 360 .

Finally, the motion penalty ( ) is calculated by
computing the motion vectors on the GT and the estimated
segmentation maps

(24)

where is any parametric motion representation for the GT
object.

The measures for the whole sequence or video shot can be
found by averaging or taking the maximum of the values for
each frame. The measures for the whole sequence will be de-
noted by , , and . The extension to multiple
objects can also be carried out as discussed in Section III-A.
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B. Representation of Data

Let the GT performance scores obtained for the th frame
( ) video shot or a video sequence denoted by

(25)
consisting of the pixel misclassification penalty, shape penalty
and the motion penalty and hence . The superscript de-
notes that these measures use GT segmentation maps. Similarly,
let the NGT performance scores obtained for the th frame be
denoted by

(26)

where and the first variable is the inter-frame color his-
togram difference measure calculated using the measure, the
second parameter ( ) is the measure calculated
from color differences along the estimated object boundary, and
the third parameter ( ) is the measure of motion
differences along the estimated object boundary.

Using the above vectors, the following data matrix can be
constructed:

(27)

where the performance measure vector in a column for
reads as (28), shown at the bottom of the page, and

is the total number of observations. For example, can be the
number of frames of a sequence for which the performance mea-
sures are computed. If separate tracking results are collected for
the same frame with different algorithms, the number of obser-
vations increases accordingly. For scale independence, the data
matrix has been standardized by subtracting from each row its
mean and by dividing by its standard deviation to yield .

Using the normalized variates, we calculate the matrix of
sample covariances where the GT and NGT partitions are in-
dicated as follows:

(29)

where , , and
.

We will assume that has full rank and we will take
, without loss of generality.

C. Canonical Correlation Analysis

The association between the two data sets, which, in our
case, consist of GT and NGT measures, can be quantified by
using canonical correlation analysis. The space defined by the
measurement vectors is transformed in such a way that linear
combination of one set is maximally correlated with the linear
combination of the other set, while being mutually uncorrelated
with the remaining eigensolutions [21]. Let us define these
linear combinations as , where

Fig. 3. (Top row) Sample frames and (bottom row) corresponding GT
segmentation maps of the (left) Hall monitor, (middle) Stefan, and (right)
Bream sequences.

is ( 1) and is ( 1). These pairs of linear combinations
are referred to as canonical variables and their correlations
are referred to as canonical correlations. Furthermore, the
combinations in a set must be orthogonal to each other.

The first set of canonical variates and can be gen-
erated by

(30)

It can be shown that the parameters are the

joint eigenvalues of the matrices
or of . These matrices have,
respectively, the eigenvector set and .
Finally, the linear combiner weights and in (30) result
from and . The readers are referred to [21],
[22] for a complete discussion of canonical correlation analysis.

The square of the canonical correlation gives us the pro-
portion of variance in each canonical variate ( or )
that is related to the other canonical variate of the pair. Some re-
searchers argue that [22] the degree of association (shared vari-
ance) between the two sets of variables ( and ) cannot be
represented by and prefer the “canonical loadings” approach
as explained in the following section.

D. Canonical Loadings and Redundancy

We would like to show that the GT performance measures are
mostly redundant given the information about the NGT mea-
sures. Redundancy in this context corresponds to the amount
of the variance of GT measures accounted for by the NGT mea-
sures. This redundancy can be computed via the canonical load-
ings [22] which will be described below.

With this goal in mind, we look at the relations of the perfor-
mance measures in one set (say, GT) with the canonical variates
of its own GT set and of the other set (NGT), called intraset
loadings and interset loadings, respectively. In other words, we
can use the correlations of the NGT performance measures in
set with the canonical variates of set (intraset loadings),

(28)
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TABLE I
SCORES FOR COLOR HISTOGRAM DIFFERENCE MEASURE

Fig. 4. Color histogram differences between H and H , calculated with �

measure, using segmentation maps shifted by �10 pixels, starting from frame
100.

Fig. 5. (a) Video object plane for the 134th frame of the Hall monitor
sequence which is downloaded from the web page of COST 211 group. The
center probe blocks are marked with dots. (b) Incorrectly segmented regions of
the boundary are marked with black boxes. (c) A segmentation of the 123rd
frame of the Bream sequence. (d) Incorrectly segmented regions are marked
with black squares.

or the correlations of the NGT performance measures in set
on the canonical variates of set of NGT measures (interset
loadings).

Fig. 6. Color differences � (t; i) along the boundary of the segmented
Bream object in Fig. 5(c).

There is a straightforward relation between the canonical
weights ( or ) and the loadings [22]. Using the symbol

to represent the vector of intraset loadings for the set
on its first canonical variate, we obtain

(31)

where is the weight vector and is the matrix of corre-
lations between variables of that set. The interset loadings can
be computed similarly using cross-correlation matrices. For ex-
ample, the vector of correlations of the set measures with the
first canonical variate of the set is

(32)

Once the loadings have been computed, it is easy to obtain a
measure of the association between the two sets of measures.
The squared interset loadings give the proportion of each mea-
sure’s variance that is accounted for by a canonical variate of
the other set. Therefore, the mean of square interset loadings
for a given component is its redundancy. That is, the proportion
of variance in set that is related to the th component of set

is

(33)

where is the vector of interset loadings of the measures in
the set with the th measure of the set. The total redun-
dancy of one set given the other is the sum of the redundancies
of the individual components. In the context of our problem, we
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Fig. 7. (a), (b) Frames 100 and 130 of the “Bream” sequence. (c), (d) Frames 1 and 18 of the “Parrot” sequence. (e), (f) Frames 453 and 483 of the “Flikken”
sequence.

Fig. 8. Tracking results for frames 109, 121, and 128 (with some zoom in). Row 1: ETRI results. Row 2: Open-loop method. Row 3: Closed loop with edge
energy only. Row 4: Closed loop with equal weighting. Row 5: Closed loop with adaptive weighting methods.

want to determine the “redundancy” of the GT data given the
NGT measure set.

There are two major reasons to turn our attention to the load-
ings. First, the loadings are bounded by plus and minus 1 and
are standardized across canonical variates. Neither is the case

for the canonical weights. Second, the loadings appear to be less
affected by the correlations among the variables as compared to
the canonical weights [22].

More explicitly, a variable may receive a small weight simply
because it is highly correlated with another variable in its set,
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Fig. 9. Measures with GT for “Bream” sequence: (a) the misclassification penalty DP (t) for each frame; (b) the shape penalty DS(t); (c) the motion penalty
DM(t). Measures without GT: (d) color differences along boundary; (e) motion differences along boundary; (f) inter-frame histogram differences using �
measure.

even though both variables have high correlations with the
canonical variate [22]. Hence, when another variable is added
or removed from the set, the weight for a particular variable
may change drastically. However, the canonical loadings are
expected to be more stable.

V. EXPERIMENTAL RESULTS

A. Sensitivity Analysis and Parameter Selection

In order to understand which histogram difference calcula-
tion method discussed in Section II-B is more sensitive to seg-
mentation errors and also to tune the parameters, e.g., ( ) of
the performance measures, we performed some experiments.

We used the GT segmentation maps of the well-known Hall
Monitor (frames 32–230), Bream (frames 100–130), and Stefan
(frames 145–175) sequences. Sample frames of these sequences
together with their GT segmentation maps are shown in Fig. 3.
In order to simulate incorrect segmentation, the GT segmenta-
tion maps have been randomly shifted in each frame by a max-
imum of pixels in horizontal and vertical directions [10].

The results for the performance measure based on histogram
differences for the three sequences are summarized in Table I.
We can observe that is the most sensitive metric to the pertur-
bations in the segmentation map since the percentage increase
in , and in the variance of ( ) are largest for the

measure. Note that both the mean and the variance increase
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TABLE II
MEAN OF PERFORMANCE EVALUATION SCORES FOR THE “BREAM” SEQUENCE

Fig. 10. Scatter plot of the first canonical variate pair.

significantly. Normally, the variance of is expected to
be low when the segmentation masks are correctly located since
the color histogram of the object is not expected to change much
between frames.

Another way of simulating incorrect segmentation is to in-
troduce flicker to the video object planes by deleting a rectan-
gular block randomly [10]. The same ratio tests for this type of
distortion also indicated that the histogram measure is more
sensitive than the other measures.

In order to determine optimal values for the (probe length)
which was shown in Fig. 1(c), we calculated the and

measures defined in (3) and (15) for different values
of ( ). We observed the maximum ratio of the

and values (similar to Table I) for the Hall mon-
itor, Stefan and Bream sequences. The experiments indicated
that a value of , gave the highest ratio for the mea-
sure, and , gave the highest ratio for measure. A
longer probe length is needed for the measures, since
motion estimation is not perfect especially around object bound-
aries. Therefore, during the experiments we use a probe length
of , for calculation of the measure, and a probe
length of , for calculation of the measure. A rea-
sonable value for was found to be 3.

B. Localization of Incorrect Segmentation

In order to demonstrate the temporal localization capability
of the proposed measures, we chose , , and

in (20). In Fig. 4, a plot of the measure for the Hall
monitor sequence is given, which is calculated using the GT seg-
mentation masks up to frame 100 and with perturbed segmenta-
tion masks for frames 101–230. As seen in Fig. 4, the histogram
difference measure based on distance calculation can signal
the onset of the perturbed segmentation masks accurately.

Temporal localization of incorrect segmentation is signaled
by a big jump in the plot of can be seen in Fig. 4. There-
fore, for the determination of the threshold [introduced in
(20)], a mean value of up to time can be calculated, and
an incoming that exceeds this mean by a certain mag-
nitude can be marked as a badly segmented frame. However, a
threshold that is more correlated with human judgements (a just
noticeable value that creates the jitter sensation) can only be de-
termined by extensive perceptual experiments, which requires
further research.

The performance measures are also capable of spatial lo-
calization by utilizing (21). In Fig. 5(a) and (b), we show the
video object plane for the 134th frame of the Hall monitor se-
quence (downloaded from the web page of COST 211 group).
As observed, the boundary of the object is located incorrectly
except for a short segment around the shirt. The incorrectly seg-
mented boundary segments are marked with black boxes. The
measure (21) is able to support the subjective observations quan-
titatively. Another example is given for the Bream sequence in
Fig. 5(c) and (d). In order to achieve these results, we obtained
two binary images by choosing the parameters in (21) as ,

and , with , that is, the threshold
set at one standard deviation of the scores. Then, we AND these
two binary images to obtain the final localization. A plot of the
color differences along the object boundary is given in Fig. 6.

C. Canonical Correlation Analysis

In this section, we present the experimental results for the pro-
posed performance evaluation measures, based on three video
sequences. The first video sequence is the well-known “Bream”
sequence, two frames of which are shown in Fig. 7. The object
to be tracked is the fish swimming toward right and then turning
toward left, causing a lot of self occlusion. However, the back-
ground is not cluttered.
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Fig. 11. Tracking results for frames 2, 8, and 18. Row 1: ETRI results. Row 2: Open-loop method. Row 3: Closed loop with edge energy only. Row 4: Closed
loop with equal weighting. Row 5: Closed loop with adaptive weighting methods.

The second sequence is called the “Parrot” sequence, sample
frames of which are shown in Fig. 7. In this sequence, the
rigid parrot object translates a total of (26, 20) pixels over 18
frames. The background, on the other hand, is very cluttered
in this sequence.

The third sequence is a 30 frame section of a TV series called
“Flikken”1 , the first and the last frames of which can be seen in
Fig. 7. There are two foreground objects in this scene. The lady
on the left will be named as object 1, and the lady on the right
will be named as object 2.

1) “Bream” Results: The tracking results for frames
100–130 are obtained using five different object tracking
techniques (open loop, edges only, equal weight, adaptive
weight, and ETRI). The first four techniques are obtained
from intermediate steps of the video object tracking algorithm
described in [23], [24] and the last technique was developed
at Electronics and Telecommunications Research Institute
(ETRI), Korea [25], [26]. The ETRI method is a semiauto-
matic object segmentation tool which consists of two steps:
intra-frame segmentation and inter-frame segmentation. In
the intra-frame segmentation step, the user draws the object
boundary manually. In the inter-frame segmentation, the

1A TV series produced by MMGNV for VRT.

regions defined by the user are tracked by using multiple affine
motion models.

Sample tracking results are given in Fig. 8, where incorrect
boundary segmentations are pointed out using a square marker.
Visual inspection of the results reveals that closed-loop results
(row 5) with adaptive weighting are the best, closely followed
by the equal weighting results (row 4). The method using edge
energy only is third in the rank (row 3) and the worst results are
obtained by ETRI (row 1) and open-loop methods (row 2).

In Fig. 9, we give the performance evaluation measures
using the GT and NGT measures, respectively. Table II sum-
marizes the performance evaluation measures by providing
the mean values over all frames. We can observe in Table II
that the ETRI and open loop methods have the worst scores
in all GT and NGT measures, which is in agreement with
our subjective evaluations. The combined performance scores
in the last column are obtained by equal weight averaging
after normalizing each column by its maximum value. As the
GT measures deteriorate, there is a commensurate increase
in the NGT measures. This correlation is especially strong
between misclassification penalty and the measure of
color differences along the object boundary [compare
Fig. 9(a) and (d)].
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Fig. 12. Measures with GT for “Parrot” sequence: (a) the misclassification penalty d (t) for each frame; (b) the shape penalty d (t); (c) the motion
penalty d (t). Measures without GT: (d) color differences along boundary d (t) in YCbCr color space; (e) motion differences along boundary d (t);
(f) inter-frame histogram differences using � measure d (t).

In order to quantify the correlation, we have calculated the
correlation matrix which was defined in (29)

(34)
We can observe that there are significant correlations (larger

than 0.5) between and (0.74); and

(0.95); and (0.61); and (0.73);
and and (0.86). If we carry out the canonical
correlation analysis as discussed before to find the pair of linear
transformations that maximize the correlation between the GT
and NGT measures, we get the following pair of transformation
coefficients:

The first canonical variate (composite) of the set of GT measures
assigns the largest weight (0.77) to the misclassification penalty
and about one fourth of it (0.21) to the motion discrepancy.
Shape discrepancy is discarded (0.08). From the NGT mea-
sure set, the canonical variate (composite) is constructed with
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TABLE III
MEAN OF PERFORMANCE EVALUATION SCORES FOR THE “PARROT” SEQUENCE

Fig. 13. (a) Frame 483 of the “Flikken” sequence. (b) The GT segmentation map. (c), (d), (e) The distorted segmentation obtained through dilation, erosion, and
random shifting, respectively.

the color difference measure (0.84) and the histogram measure
(0.14) with motion information discarded (0.09). The less con-
clusive evidences from shape discrepancy in the first set and the
motion measure in the second set are also obvious in Fig. 9(b)
and (e), respectively. The reason that shape and motion mea-
sures have small weights can be due to their small correlations
with the other measures in the set. For example, the correlation
of shape measure with the histogram measure is small (0.27) as
seen in the correlation matrix (34).

The most important result of the canonical analysis is the
fact that, the maximum correlation between the first canonical
variate pair, consisting of linear combinations of GT and NGT
measures ( ) is 0.98. The square of it expresses the
proportion of variance in each composite (canonical variate) that
is related to the other composite (variate) of the pair consisting
of the linear combinations of GT and NGT measures. The scatter
plot of the first canonical variate pair is given in Fig. 10. This
high canonical correlation implies that the set of NGT measures
reflect the information contained in the set of GT measures.

We also carried out the redundancy computation through
canonical loadings as was discussed in Section IV-D. As a
result, we observed that 66% of the variance in the set of GT
measures is accounted for by the set of NGT measures. On the
other hand, 65% of the variance in the set of NGT measures
was found to be accounted for by the set of GT measures.

2) “Parrot” Results: Several tracking results for the Parrot
sequence are shown in Fig. 11. If we analyze the tracking results
in Fig. 11, we can say that the results of ETRI (row 1) and edges
only (row 3) are the worst and open loop results (row 2) are
the best. The plots for the GT measures and the NGT measures
are given in Fig. 12. The quantitative results of the “Parrot” se-
quence are summarized in Table III together with the combined
measure. The quantitative evaluation results show that ETRI and
edges only results get the highest (worst) scores and the open
loop results get the lowest (best) scores, although the exact or-
dering of ETRI and edges only methods is different for GT and
NGT measures.

The canonical correlation analysis for this sequence yields a
maximum correlation of with the following transfor-
mation parameters:

The computation of redundancy through canonical loadings
revealed that 62% of the variance in the set of GT measures is
accounted for by the set of NGT measures. However, 56% of
the variance in the set of NGT measures is accounted for by the
set of GT measures.

3) “Flikken” Results: The GT segmentation map of the last
frame of the “Flikken” sequence together with the evaluated
segmentation results are shown in Fig. 13. In order to test the
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TABLE IV
COMBINED PERFORMANCE EVALUATION SCORES FOR THE “FLIKKEN” SEQUENCE

Fig. 14. Measures for “Flikken” sequence: (a) the misclassification penalty d (t) for each frame for object 1; (b) inter-frame histogram differences using �

measure d (t) for object 1.

performance measures under distortions different from the ones
that have been introduced by the tracking algorithms we con-
sidered, we distorted the GT segmentation maps with increasing
amounts of dilation, erosion and random shifts to obtain the seg-
mentation results to be evaluated. The GT and NGT scores for
object 1 (lady on the left) and object 2 (lady on the right) are
summarized in Table IV. The combined scores are obtained by
averaging the scores of object 1 and object 2, assuming that
they are of equal importance. It can be seen from the table
that GT and NGT measures give the same ordering of the seg-
mentation results. In Fig. 14, the plots of pixel misclassifica-
tion penalty ( ) and the inter-frame histogram difference
measure ( ) for object 1 are given, which have the highest
correlation value in the correlation matrix (0.85) as can also be
observed in Fig. 14.

The canonical correlation analysis for object 1 yields a max-
imum correlation of with the following transforma-
tion parameters:

The computation of redundancy through canonical loadings
revealed that 60% of the variance in the set of GT measures
is accounted for by the set of NGT measures, and 72% of the
variance in the set of NGT measures is accounted for by the set
of GT measures.

The canonical correlation analysis for object 2 gives a max-
imum correlation of with the following transforma-
tion parameters:

The computation of redundancy through canonical loadings
revealed that 49% of the variance in the set of GT measures
is accounted for by the set of NGT measures, and 51% of the
variance in the set of NGT measures is accounted for by the set
of GT measures.

VI. CONCLUSION

We presented three NGT measures for quantitative perfor-
mance evaluation of video object segmentation and tracking
algorithms. The proposed measures yield a figure of merit for
the whole segmented video sequence or, in turn, can give more
local results, such as per frame scores or per object scores.
Thus it is possible to identify within a given video sequence
the frames that are poorly segmented, or even parts of an object
within a frame with poorly defined boundary. The proposed
measures for segmentation quality can be easily extended to
the case of multiple foreground objects. We have analyzed the
correlation between the three proposed NGT measures and a
set of three GT measures. We have shown experimentally that
they are significantly correlated, implying that NGT measures
can be reliably used for performance monitoring in lieu of
GT measures under certain assumptions. Thus the extremely
tedious and time-consuming task of GT extraction can be
avoided.
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Ottawa, ON, Canada, İstanbul Technical University,
the Technical University of Delft, Delft, The Nether-

lands, and the Ecole Nationale Supérieure des Telecommunications, France.
Dr. Sankur was the Chairman of the 1996 International Telecommunications

Conference and the technical Co-Chairman of ICASSP 2000.

A. Murat Tekalp (S’80–M’84–SM’91–F’03) received the Ph.D. degree in elec-
trical, computer, and systems engineering from Rensselaer Polytechnic Institute,
Troy, NY, in 1984.

From December 1984 to August 1987, he was with Eastman Kodak Com-
pany, Rochester, NY. He joined the Electrical and Computer Engineering De-
partment, University of Rochester, in September 1987, where he is currently
a Distinguished Professor. Since June 2001, he has been with Koç University,
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