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Abstract—Functional near-infrared spectroscopy (fNIRS) is an
emerging technique for monitoring the concentration changes of
oxy- and deoxy-hemoglobin (oxy-Hb and deoxy-Hb) in the brain.
An important consideration in fNIRS-based neuroimaging modal-
ity is to conduct group-level analysis from a set of time series
measured from a group of subjects. We investigate the feasibil-
ity of multilevel statistical inference for fNIRS. As a case study, we
search for hemodynamic activations in the prefrontal cortex dur-
ing Stroop interference. Hierarchical general linear model (GLM)
is used for making this multilevel analysis. Activation patterns both
at the subject and group level are investigated on a comparative
basis using various classical and Bayesian inference methods. All
methods showed consistent left lateral prefrontal cortex activation
for oxy-Hb during interference condition, while the effects were
much less pronounced for deoxy-Hb. Our analysis showed that
mixed effects or Bayesian models are more convenient for faithful
analysis of fNIRS data. We arrived at two important conclusions.
First, fNIRS has the capability to identify activations at the group
level, and second, the mixed effects or Bayesian model is the appro-
priate mechanism to pass from subject to group-level inference.

Index Terms—General linear model (GLM), near-infrared spec-
troscopy, statistical inference, Stroop task.

I. INTRODUCTION

FUNCTIONAL near-infrared spectroscopy (fNIRS) is a
noninvasive method to monitor brain activation by measur-

ing changes in the concentrations of oxy- and deoxy-hemoglobin
(oxy-Hb and deoxy-Hb) [1]. It is simply based on measuring the
transmitted and received near-infrared light in multiple wave-
lengths and calculating the relative concentrations of oxy-Hb
and deoxy-Hb using modified Beer–Lambert law [2]. fNIRS
has significant advantages over functional magnetic resonance
imaging (fMRI) such as absence of radiation, portable nature
of the device, relative user friendliness, and low cost of the
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procedure. On the other hand, fNIRS has the shortcomings of
low spatial resolution, shallow depth of penetration, and con-
sequently, some uncertainty about the probed region. Although
near-infrared spectroscopy has been successfully employed in a
number of physiological measurements [3], [4], more progress
is needed to establish standard methods for statistical inference
of cognitive activity detection and assessment.

Parametric statistical analysis (PSA) of neuroimaging data
typically focuses on testing of hypotheses for subject popula-
tions. Given a set of observed data, PSA tries to infer on the
highest level in the hierarchy. This highest level often represents
the effect analysis over some or all of several measurements,
detectors, sessions, and subjects in a population. General linear
model (GLM) has been the most commonly used tool to make
inferences from fMRI data [5]. GLM may also be extended
to a hierarchical mode to arrive at multilevel statistical infer-
ences [6]. Apart from a few inherent differences between them,
both fMRI and fNIRS aim to detect and localize brain hemo-
dynamic activity based upon neurovascular coupling model.
Thus, it would be logical to extend the GLM methodology to
fNIRS signals. Schroeter et al. [7] were one of the first groups
to apply GLM for fNIRS signals. Using a visual stimulus, they
arrived at the conclusion that GLM is feasible especially for
deoxy-Hb. In a recent study, it was shown that model-based
analysis with GLM is capable of detecting event-related human
brain activity recorded with fNIRS in the occipital cortex [8]. A
“shift method” has also been proposed to recover small signals
within the GLM framework, which exploits the higher temporal
resolution of fNIRS with respect to fMRI [9].

We address in this study the multilevel inference problem
for fNIRS signals using a hierarchical GLM to link the mea-
surement space to the upper-level parameters. In the multi-
level approach, the activation patterns are estimated first at the
subject level, and then, these patterns are carried over to the
group level. In this analysis, we use comparatively three clas-
sical methods of multilevel inference, i.e., fixed effects (FFX),
random effects (RFX), mixed effects (MFX) analyses, and two
Bayesian inference methods. One of the Bayesian methods also
goes by the name of pseudomixed effects (ΨFX) [10], since
it employs the basic GLM at the subject level and uses the
Bayesian methodology to merge the subject parameters at the
group level. The second method, denoted as Bayesian posterior
estimation (BPE), is a fully Bayesian one. It may be argued that
the Bayesian methodology can cope better with the classical
problem of within-subject and between-subject variances in a
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more principled framework [6]. We will contrast the classical
and Bayesian approaches and demonstrate the advantages of the
latter.

The particular experimental protocol that we used in this
study is a variant of Stroop task, which is known to be a good
activator for prefrontal cortex [11], [12]. We used the version of
the Stroop task introduced by Zysset et al. [13], since it provides
a way to separate interference that takes place at the conceptual
level from the response preparation, and furthermore, it is very
suitable for computerized application of the test.

We obtained data from healthy subjects and determined acti-
vations in their prefrontal cortex during Stroop interference at
the subject and group levels. Schroeter et al. [14] had investi-
gated the same type of Stroop task with fNIRS on healthy sub-
jects. They found that the hemodynamic response was stronger
for incongruent compared to neutral and congruent trials in the
lateral prefrontal cortex, bilaterally both for oxy-Hb and deoxy-
Hb (and total Hb, which is their sum). Ehlis et al. [15] used a
different kind of Stroop paradigm to monitor the hemodynamic
response of healthy subjects by fNIRS. In interference trials,
they revealed specific activations in the inferior–frontal areas of
left hemisphere for oxy-Hb and total Hb. However, their activa-
tion for deoxy-Hb was much weaker and less conclusive. In line
with these studies, we set to explore the feasibility of fNIRS
to monitor the cognitive activity and search for spatially spe-
cific cognitive activations in the prefrontal cortex during Stroop
interference.

An important aspect of our research is the investigation
of the cortical cognitive responses in a multilevel setting,
that is, both at subject and group levels. This allows us to
keep track of the activations at different levels and pursue
methodological discussions. Although Schroeter et al. [7] used
random effects model for group activation analysis, in-depth
analysis of fNIRS signals using hierarchical models has not
been performed yet. Hence, this study must be seen as an effort
to demonstrate the potential of fNIRS for cognitive activity
monitoring. The second important contribution of our research
is the experimental comparison of classical methodologies and
Bayesian methodologies, and the assessment of the superiority
of Bayesian approach in predicting activity.

II. METHODS

A. Classical Analysis of fNIRS Data

Classical analysis of multilevel functional neuroimaging data
generally proceeds in a bottom-up fashion. Once the statistics
that summarize the data at one level are calculated, they are
carried to the upper level. The main difference among the three
classical statistical inference techniques of FFX, RFX, and MFX
lies in the determination of the variance estimates [16], [17]. An
outline of the methods is presented in Appendix A. Briefly,
FFX and RFX ignore the between-subject and within-subject
variances, respectively. Note that, since it ignores the between-
subject variance, the inference of FFX is limited to the particular
set of subjects [16]. After calculating the subject parameter
and variance estimates using GLM specifically designed for
each subject, FFX takes the average variance estimate as the

group variance. On the other hand, RFX calculates the group
variance over the estimated parameters of the subjects. MFX
tries to integrate both within- and between-subject variances by
carrying the subject variance estimates to the group level. In this
study, MFX was carried on as described by Beckmann et al. [16]
and implemented by Thirion et al. [10]. FFX, RFX, and MFX
are all summary statistical approaches, i.e., beginning from the
bottom level, each level is analyzed separately and only the
parameters of interest are carried to the upper level. The main
benefit of working with a summary statistics approach is its
computational ease, which becomes very important for high-
dimensional data like fMRI.

The statistics proposed by Neumann and Lohmann [18],
called pseudomixed effects (ΨFX), is a mixture of classical and
Bayesian procedures. The parameter and variance estimates are
calculated at the subject level using the GLM. Then to arrive
at the group decision, the posterior distribution of a subject is
taken as the prior distribution of another subject. The end result
is an average of subject parameter estimates inversely weighted
by their variance estimates. In essence, this is a fixed-effects
approach, since it does not take into account between-subject
variances. Note that, this is also a summary statistics method.

In conclusion, parameters estimated at subject level are the
same for all of these four methods, namely FFX, RFX, MFX,
and ΨFX. After specifying subject-specific GLMs, one calcu-
lates subjects’ parameters and variances, and continues toward
average group activation calculation. Since we are generally not
interested in all of the parameters but rather in a particular linear
combination of them, contrast vectors are specified at the subject
level and applied to the parameter and variance estimates.

B. Bayesian Analysis of fNIRS Data

Bayesian analysis of hierarchical GLM has been applied
extensively to fMRI signals [6], [17]. Our implementation of
Bayesian methodology for fNIRS signals will also follow sim-
ilar procedures. We specify noninformative priors as in [17],
since we do not have any prior information and generally the
number of subjects is so small to make the influence of the prior
significant. The details of the Bayesian analysis are presented
in Appendix B. Since the modes of the conditional posterior
probability distribution functions can be easily calculated, we
can make use of an algorithm like iterated conditional modes
(ICMs) [19]. Beginning from some initial values, we can cycle
through the modes until convergence. We preferred ICM over
some other Monte Carlo schemes like Gibbs sampling because
of its simplicity and speed, which are important criteria espe-
cially for practical purposes. For multimodal distributions, ICM
has the risk of getting stuck at a local minimum or oscillating,
but for unimodal distributions (as it is in our case), ICM gives
quick solutions. In actual implementation, we confirmed the
convergence of the algorithm to the same output by starting the
chain at different initial points.

We applied the contrast vector only when all of the estima-
tion process had ended and that group parameters were avail-
able. As in the classical analysis case, this may be achieved
by specifying a contrast vector. The marginal posterior of
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contrasted group parameters obeys a univariate noncentral
Student’s t-distribution [20]. We can make inferences using this
posterior, and ask whether our contrasted parameter estimates
are higher than a particular value.

The main difference between the Bayesian analysis presented
here (BPE) and the methods mentioned in the previous section
is that the former is not summary statistics. Bayesian analysis in
our implementation incorporates the group variables into subject
parameter estimation process. Hence, each subject should be
analyzed simultaneously, and if a new subject is included in the
group, the analysis should be repeated for every subject.

III. EXPERIMENTS

A. Subjects

We recruited 12 healthy subjects (7 females, 5 males) from the
university community (right-handed, mean age 26.17 ± 4.30,
range 20–31). Subjects had no reported neurological, medical,
and psychiatric disorders. None were taking medications at the
time of measurement. All the subjects had normal or corrected-
to-normal vision and normal color vision. Written informed
consent was obtained from all subjects before the measurement.

B. fNIRS Data Acquisition

Experiments were performed using a continuous-wave
near-infrared spectroscopy device (NIROXCOPE 301) built in
Biophotonics Laboratory, Boğaziçi University [21], [22]. The
device is capable of transmitting near-infrared light at two wave-
lengths (730 and 850 nm), which are known to be able to pene-
trate through the scalp and probe the cerebral cortex. Calculation
of concentration changes of oxy-Hb and deoxy-Hb in blood is
based on Beer–Lambert law. Employing four LEDs and ten de-
tectors, the device can sample 16 different volumes (channels)
in the brain simultaneously. The distance between each source
and detector is 2.5 cm, which guarantees a probing depth of ap-
proximately 2.0 cm from the scalp (see Fig. 1 for the details of
the probe). We have chosen rectangular probe geometry for ob-
taining nonoverlapping areas and limited our source-to-detector
distances to 2.5 cm for a better fit to the forehead. This amount of
separation has been shown to reliably probe the cortical activity
[22]–[26]. LEDs and detectors were placed in a flexible printed
circuit board that was specially designed to fit the curvature of
the forehead. Sampling frequency of the device was 1.4 Hz.

Stimulus onset vectors for each type of stimulus (neutral, con-
gruent and incongruent) were formed and convolved with the
canonical hemodynamic response function (HRF) [27]. Canon-
ical HRF was scaled so that it had a peak response of unity;
hence, the parameter estimates directly gave peak concentration
change during the stimulus. These three vectors constituted the
cognitive part of the design matrix. The fNIRS data were digi-
tally low-pass filtered with a cutoff frequency of 330 mHz. To be
able to cope with various low-frequency trends, discrete cosine
transform (DCT) basis functions [28] were added to the design
matrix with a minimum period of 120 s. Incorrect and omitted
trials were modeled separately and they, together with the trend
terms, form the nuisance part of the design matrix.

Fig. 1. NIROXCOPE 301 probe (right) is attached to the forehead. Source–
detector geometry ensures probing of 16 nonoverlapping volumes when the light
sources are time multiplexed. (Head image was obtained from MATLAB Central
File Exchange: http://www.mathworks.com/matlabcentral/fileexchange.)

C. Experimental Paradigm

Subjects were asked to perform color–word matching Stroop
task whose trials are the Turkish versions of Zysset et al. [13].
Subjects were presented with two words, one written above the
other. The top one was written in ink color whereas the bottom
one was in white (over a black background). Subjects were asked
to judge whether the word written below correctly denotes the
color of the upper word or not. If color and word match, then
subjects were to press on the left mouse button with their fore-
finger, and if not, on the right mouse button with their middle
finger. Subjects were informed to perform the task as quickly
and correctly as possible. The words stayed on the screen until
the response was given with a maximum time of 3 s. The screen
was blank between the trials. The experiment consisted of neu-
tral, congruent and incongruent trials. In the neutral condition,
upper word consisted of four X’s (XXXX) in ink color. In the
congruent condition ink color of the upper word and the word
itself were the same, whereas in the incongruent condition, they
were different. The trials were presented in a semiblocked man-
ner. Each block consisted of six trials. Interstimulus interval
within the block was 4.5 s and the blocks were placed 20 s apart
in time. The trial type within a block was homogeneous (but the
arrangements of false and correct trials were altering). There
were ten blocks of each type. Experiments were performed in a
silent, lightly dimmed room. Words were presented via an LCD
screen that was 0.5 m away from the subjects. The task protocol
is approved by the Ethics Review Board of Boğaziçi University.

IV. RESULTS

A. Behavioral Results

Reaction times (RTs) were calculated only from the correctly
answered trials. The first and second subjects responded slower
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to congruent stimuli in comparison to incongruent stimuli. Sub-
ject 6 responded slightly slower to neutral trials than congruent
trials. For the rest of the subjects, the ordering of RTs is neutral–
congruent–incongruent. The average RTs to neutral, congruent,
and incongruent trials are 1029.3 ± 277.1, 1183.9 ± 370.5, and
1308.8 ± 367.1 ms, respectively.

Comparing the RTs, two-tailed paired t-test revealed signif-
icant differences among all three trial types: incongruent vs.
neutral: t(11) = 7.042, p = 0.000; incongruent vs. congruent:
t(11) = 2.882, p = 0.015; congruent vs. neutral: t(11) = 4.351,
p = 0.001. There were two common effects in the Stroop task:
first, the interference effect refers to the observation that sub-
jects have more difficulty in answering incongruent trials with
respect to neutral trials. Second, the facilitation effect comes
from the observation that subjects respond quicker to congruent
trials compared to neutral trials [29]. Although the interference
effect was evident in RTs, we could not observe a facilitation
effect. Using the same kind of stimuli, Zysset et al. [13] have
not observed facilitation effect either. It has been pointed out
that facilitation was not a necessary concomitant of interfer-
ence and it played a much lesser role than interference [12].
It was asserted that the missing facilitation was due to trying
to speed up an already rapid response [12], [14]. Additionally,
as pointed out by an anonymous reviewer, the slower response
to congruent trials may be related with the observation that the
subjects try to judge whether the trial is congruent or incongru-
ent, which puts an extra cognitive load with respect to neutral
trials.

Error rates were generally small, and most of the subjects did
not make any mistakes for neutral and congruent trials. Mean
error rates (in percentage) were 0.56 ± 1.92, 0.56 ± 1.30, and
4.31 ± 5.97. We did not make any statistical test in terms of
error rates, since their distributions are clearly not Gaussian.
However, it can be said that interference effect also manifests
itself in error rates.

B. fNIRS Results

Our fNIRS device provides us with a set of time series
recorded over 16 channels over the scalp. The locations of the
probed regions are shown in Fig. 1. Note that the ordering of the
channels is from left to right, i.e., “1” is on the left and “16” is on
the right. Oxy-Hb and deoxy-Hb data were analyzed separately.

1) Oxy-Hb Results: The subject-level and group-level acti-
vation patterns for interference effect (incongruent–neutral) are
shown in Fig. 2(a). These patterns and the others presented in
the following figures result from the thresholded z-scores at
0.05 significance level (that is, zthresh = 1.65 and p = 0.05,
adjusted for multiple comparisons by Bonferroni correction).
We also converted the posterior probabilities given by the ΨFX
and BPE to z-statistics. Recall that subject-level activations are
common for FFX, RFX, MFX, and ΨFX, and estimated by
ordinary least squares (OLS) in a single step, whereas BPE it-
eratively estimates both subject and group parameters. Our first
observation is that there is activation widespread over channels
for most of the subjects. Furthermore, all subject activations
resemble each other for both OLS and BPE approaches. This is

Fig. 2. (a) Activation patterns for oxy-Hb for “incongruent–neutral” contrast.
Top: Subject-level activations detected by OLS (left) and BPE (right). Middle:
Activated subject count (%) for OLS (left) and BPE (right). Bottom: Group-level
activations for FFX, RFX, MFX, ΨFX (left), and BPE (right). (b) Activation
patterns for oxy-Hb for “incongruent–congruent” contrast. Organization of the
figure is the same as that of Fig. 2(a).

usual and points to the fact that group-level variance is higher
than subject-level variance, which causes the effect of group pa-
rameters being weighted down in the estimation of subject-level
parameters (see Section II-B). Despite the apparent similarity
between OLS and BPE methods, the consistent activation in
channel 4 revealed by BPE is worth noticing. BPE finds that
channel 4 is activated for all of the subjects, while this is not the
case for single-level GLM. Our second important observation
is that the percentage of activated subjects per channel indi-
cates that activation is dominantly left lateral [Fig. 2(a), middle
row]. When group-level inference is inspected [Fig. 2(a), bottom
row], this left laterality is especially evident with RFX, MFX,
and BPE. Channels 1–4 are found to be active, with channel 4
giving the highest z-value and consistency. Third, it can be seen
that the widespread activation at the subject level is carried over
to the group level with FFX and ΨFX. This is to be expected
because these two methods do not consider the between-subject
variance. The consequence is that FFX and ΨFX have higher
sensitivity but at the risk of high false positive rates.

We also investigated whether there is a significant activa-
tion difference between incongruent and congruent trials. Our
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Fig. 3. oxy-Hb time series with fitted cognitive waveforms and trend
component.

behavioral results have shown that there was no facilitation ef-
fect, i.e., subjects had more difficulty with congruent trials with
respect to neutral trials. This also manifested itself in fNIRS
findings and the activations both at the subject and group levels
are less pronounced this time [we could not find any activation
for subjects 1 and 6, see Fig. 2(b), top row]. FFX and ΨFX
again found higher number of activated channels compared to
the other three methods [Fig. 2(b), bottom row]. The activations
of RFX, MFX, and BPE are confined to the left lateral channels.

We would suggest that the medial activations detected by
FFX and ΨFX may be due to anterior cingulate cortex (ACC),
which has been identified as a region involved in Stroop-like in-
hibition paradigms [30]. However, it has been shown that ACC
is not specifically involved in interference processes, but rather
in motor preparation processes [13]. Hence, ACC should not
be substantially activated when comparing neutral and incon-
gruent conditions, as the motor response preparation process,
once the decision is taken, is the same for both conditions in
color–word matching Stroop task [13]. Additionally, consider-
ing the penetration depth of near-infrared light [1], it is doubtful
if fNIRS would be able to capture the activations in ACC with
source–detector separation of 2.5 cm. Hence, we conclude that
the medial activations detected by FFX and ΨFX are false acti-
vations.

Since subjects had more difficulty with answering congruent
trials with respect to neutral trials, we also investigated the
group-level activation for the difference between these two trial
types. Although there was some activation at the subject level,
we could not find any activation at the group level.

It is possible to present the fitted cognitive waveforms to the
measured signal as in Fig. 3. The large slow trend over the
signal may be seen in this figure. For the case of this subject, the
contrast of “incongruent vs. neutral” trials is significant while
“incongruent vs. congruent” contrast is not.

Up to this point, we considered the activation detection prob-
lem. In other words, given a canonical HRF signal model, we
check whether there is activation or not in our measurements.
The complementary problem would be the estimation of this
HRF signal. To this effect, we applied a second GLM where
we modeled the HRF as successive time bins, that is, as a finite

Fig. 4. Estimated hemodynamic response function waveforms averaged over
subjects (running averages over 3 s), with hypothetical HRF at the bottom right.

impulse response filter. In this setting of the problem, the co-
efficients of the filter should give us the HRF waveform. Note
that this approach does not put any constraints over the HRF,
and effectively it averages the event-related responses for each
subject [22]. Fig. 4 demonstrates the HRF waveforms for each
type of stimulus averaged over subjects. For most of the chan-
nels, the end result is a plausible HRF waveform. We want to
examine especially the waveforms acquired from channels 1–4,
since BPE identified channels 1–4 as activated for “incongruent
vs. neutral” contrast and channels 1 and 3 for “incongruent vs.
congruent” contrast. The resulting waveforms from these chan-
nels are also consistent with this result. A caveat is that average
waveforms are by no means a direct indication of group activa-
tion, but we want to point out to the consistency between the
detection and estimation procedures.

2) Deoxy-Hb Results: Our analysis of deoxy-Hb signals did
not discover as strong activation patterns as those of oxy-Hb.
Fig. 5(a) shows the activations for “incongruent vs. neutral” con-
trast. In fact, there are activations at the subject level [Fig. 5(a),
top row], and these are carried to the group level by FFX and
ΨFX; however, RFX, MFX, and BPE do not identify any of the
channels as significantly activated [Fig. 5(a), bottom row]. This
is a consequence of the fact that deoxy-Hb exhibits a greater
variability among the subjects. To demonstrate this variability,
consider Fig. 6. What we present in this figure are the sub-
jects’ parameter estimates for the third channel of deoxy-Hb for
“incongruent vs. neutral” contrast and again the third channel
of oxy-Hb for “incongruent vs. congruent” contrast. We chose
these combinations because deoxy-Hb shows activation for 7
subjects (out of 12) but with no group activation for RFX, MFX,
and BPE, whereas oxy-Hb shows activation for 6 subjects along
with group activation by the aforementioned methods. The rea-
son for this lies in the greater variance (mainly due to the first
and third subjects) exhibited by deoxy-Hb. We present the re-
sulting activations of deoxy-Hb for “incongruent vs. congruent”
contrast in Fig. 5(b).
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Fig. 5. (a) Activation patterns for deoxy-Hb for “incongruent–neutral” con-
trast. Organization of the figure is the same as that of Fig. 2(a). (b) Activation
patterns for deoxy-Hb for “incongruent–congruent” contrast. Organization of
the figure is the same as that of Fig. 2(a).

Fig. 6. Example set of contrasted subject-level parameters (see text for detailed
explanation).

Fig. 7. Correlation between the hemodynamic and behavioral responses
for oxy-Hb in the fourth channel during interference (“incongruent–neutral”)
condition.

3) Relation Between Hemodynamic and Behavioral
Responses: We investigated the relation between hemodynamic
and behavioral responses by finding the channel-by-channel cor-
relation coefficients between the interference effects measured
by the difference in concentration changes and reaction times of
incongruent and neutral trials. We found correlation for oxy-Hb
in the fourth channel (r = −0.57, p = 0.05). Let us remind that
the fourth channel was the most consistently activated chan-
nel across subjects. Scatter plot of behavioral vs. hemodynamic
response for this channel is shown in Fig. 7. Note that the cor-
relation is negative, i.e., hemodynamic response is smaller for
higher behavioral interference effect. This finding supports the
hypothesis that “higher Stroop-specific brain activation leads to
more successful inhibition of competing responses and hence,
a smaller behavioral interference effect” [31]. Not very surpris-
ingly, we did not find any correlation between reaction times and
hemodynamic responses for the “incongruent vs. congruent”
contrast of oxy-Hb and for both of the contrasts of deoxy-Hb.

V. DISCUSSION

The main finding of this study is that fNIRS data lend itself to
multilevel statistical inference. We arrived at a consistent activa-
tion pattern during Stroop interference, particularly for oxy-Hb.
We recommend that the application of multilevel statistical in-
ference to fNIRS data should always include random effects,
and propose the usage of MFX or Bayesian methods. The prob-
lem with fixed effects models is that it ignores between-subject
variability, and since within-subject variance is much smaller, it
becomes possible for the channels to have illusory activation. To
overcome this risk, extensions to FFX, like conjunction analysis,
may be pursued [32].

We assert that Bayesian methodology may have a number
of advantages over classical procedures in analyzing multilevel
GLMs. First of all, it can cope better with the classical prob-
lem of within-subject and between-subject variances in a more
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principled framework [6]. Bayesian analysis also enabled us to
include the information obtained from the rest of the group in
the analysis of the particular subject.

Moreover, Bayesian statistics yield posterior distributions for
the parameters of interest. This enriches our statistical test dic-
tionary, which means that we are no longer limited with just null
hypothesis significance test procedure (NHSTP). Hence, we are
able to test whether the effect is greater than a meaningful size
in relation to underlying physiology [6]. This is important be-
cause the statistical significance obtained by NHSTP in classical
statistics does not truly reflect the magnitude of the effect [33].
For example, a very small but consistent effect might be found
to be statistically significant. Although a small but very reliable
activation may be interesting, neuroimaging is generally inter-
ested in activations of nontrivial magnitude, and this speaks for
the usefulness of Bayesian inference [6]. We want to point out
that using noninformative priors carries the Bayesian inference
closer to classical inference, as has also been pointed out in [34]
in a different context. The rationale for our use of noninforma-
tive priors is that cognitive fNIRS studies are in their early stage
of development, and we do not want to commit ourselves pre-
maturely; furthermore, generally the number of subjects is small
so as to make the influence of the prior a lot significant. One of
our goals in this study was to compare classical and Bayesian
inference methods for fNIRS data. Since classical procedures
work with the null hypothesis and ask whether the effect size is
greater than zero or not, we assigned the same threshold for the
Bayesian analysis for comparison.

We tried to circumvent the multiple comparison problem aris-
ing from the simultaneous testing of a number of channels by
Bonferroni correction. It is known that Bonferroni correction
is too conservative, especially when there is spatial correla-
tion between the measurements [35]. A promising method for
NIRS signals was put forward using the “false discovery rate”
procedure [36]. However, as also noted in that study, multi-
ple comparison correction of multichannel NIRS studies is still
an open problem. In this study, rather than using or proposing
new techniques, we used the traditional Bonferroni method, and
leave this problem as a further study topic.

Our Stroop findings are generally consistent with the litera-
ture, though our results are not as strong and conclusive as those
of Schroeter et al. [14]. They showed activation bilaterally for
oxy-, deoxy-, and total Hb. However, we could find activation
only for oxy-Hb in the left lateral prefrontal cortex and failed
to find any activation (at the group level) for deoxy-Hb. These
results coincide more with those of Ehlis et al. [15]. They also
found only left lateral activation for oxy-Hb, and that the acti-
vations for deoxy-Hb were much weaker. In a comprehensive
review [12], it was concluded that the left hemisphere gener-
ally showed more interference than the right. These findings
also point to an important aspect of fNIRS data analysis: the
consistencies and controversies between the results obtained
by oxy-Hb and deoxy-Hb. Using a visual stimulus, Schroeter
et al. [7] arrived at the conclusion that deoxy-Hb is more
amenable to GLM. However, Hoshi et al. [37] concluded that
cortical activation could lead to different patterns in deoxy-Hb
and proposed oxy-Hb as the best indicator of regional cerebral

blood flow changes. Findings of Ehlis et al. [15] also support this
hypothesis. On a reproducibility study of event-related fNIRS,
it was stated that deoxy-Hb was associated with lower t-values
at single subjects’ level as well as at the second level if com-
pared to oxy-Hb [38]. In another study on false memory on the
prefrontal cortex [39], deoxy-Hb did not show any significant
activations and the authors stated that this might be attributable
to the instability of deoxy-Hb concentration that was largely
determined by the washout effect of the regional cerebral blood
flow increase [40]. In a simultaneous fMRI-fNIRS study [41],
it was found that oxy-Hb was a more robust hemodynamic sig-
nal and correlated more with fMRI-BOLD response. This was
attributed to the lower signal-to-noise ratio of deoxy-Hb signal.
However, in another study [42], using an experimental design
that increased the signal-to-noise ratio of NIRS signals, it was
found that deoxy-Hb was more correlated with fMRI-BOLD
signal. When evaluated together, these findings point to the fact
that although oxy-Hb is more dominantly labeled as the carrier
of cognitive information, the potential of NIRS for measur-
ing cognitive activity and the interpretation of deoxy-Hb and
oxy-Hb still need further research. The results of our study
indicate that oxy-Hb is more sensitive to regional blood flow
changes in the prefrontal cortex caused by cognitive stimulus.
We found consistent left prefrontal activation for oxy-Hb dur-
ing Stroop interference. The activation patterns at the subject
level are more structured and the hemodynamic results show a
better correlation with the behavioral results for oxy-Hb than
deoxy-Hb.

APPENDIX A

CLASSICAL INFERENCE

We describe briefly the basic concepts of classical infer-
ence used in our research. We will mainly adopt the exposi-
tions of [16] and [43]. For the kth of K subjects, we write
Yk = Xkβk + ek , where Yk is the N-sample fNIRS data for
subject k, Xk is the N× p design matrix, βk is the p vec-
tor of unknown parameters, and finally, ek is the N-long er-
ror vector. If the error vector is Gaussian distributed with no
temporal autocorrelation, then ordinary least squares estimate
of βk is given by β̂k = (XT

k Xk )−1XT
k Yk . This estimate has

variance cov(β̂k ) = σ2
k (XT

k Xk )−1 , where the noise variance
σ2

k is estimated from the residuals. The second level of the
model links the subjects’ parameters to the group parameters:
β = XGβG + eG , where β = [βT

1 · · ·βT
K ]T is Kp-dimensional

concatenated parameter vector, XG is the Kp× q group-level
design matrix, βG is the q vector of group parameters, and eG

is the Kp error vector. In the summary-statistics approach to
multilevel GLM, the second level of the model takes as input
the estimates of the first level but not the true (and unobservable)
parameters. Hence, the second-level model is modified as β̂ =
XGβG + eG + (β̂ − β) = XGβG + êG . Then, the variance of
the error vector, êG , is VĜ = diag({σ2

k (XT
k Xk )−1}) + σ2

GVG ,
where VG is the covariance matrix of the group parame-
ters. The first component of the variance specifies within-
subject variance–covariance of the parameter vector (fixed ef-
fects) and the second component indicates the between-subject
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variance (random effects). Since generally the desired infer-
ence is on a particular contrast of parameters, cβk , β̂ becomes
β̂cont = [cβ̂1 · · · cβ̂K ]T . Subject-level error variances then be-
come cov(cβ̂k ) = σ2

k c(XT
k Xk )−1cT , and VG has a simple form,

typically IK . Summary-statistics MFX procedure accounts for
both of these sources of variance whereas FFX and RFX ignore
the second and first components of the variance, respectively.

APPENDIX B

BAYESIAN INFERENCE

The Bayesian analysis (BPE) we used is summarized here.
BPE takes into consideration the fact that the second level of
the model imposes a prior distribution on the parameters of
the first level. Consequently, the conditional posterior pdfs of
the variables can be derived using the Bayes rule (posterior ∝
likelihood × prior):

p (βk | M, r.v.) ∝ p (βk | M,βG, VG ) p
(
Yk | M,βk , σ2

k

)

p
(
σ2

k | M, r.v.
)
∝ p

(
σ2

k | M
)
p

(
Yk | M,βk , σ2

k

)

p (βG | M, r.v.) ∝ p (βG | M)
∏

k=1:K

p (βk | M,βG, VG )

p (VG | M, r.v.) ∝ p (VG | M)
∏

k=1:K

p (βk | M,βG, VG )

where M and r.v. stand for the model and remaining variables,
respectively; all the other variables being as in Appendix A.
The consequence of assuming Gaussian distributions for noise
vectors and using noninformative priors is that conditional pos-
terior pdfs have analytical forms. The conditional posterior of
subjects’ parameter vectors are proportional to the product of
two Gaussians; hence, they are also Gaussian. Actually, sub-
jects’ parameters are estimated from data and instantaneous
group parameter estimates inversely weighted with their corre-
sponding variance estimates. Subjects’ variances have, with a
noninformative prior, a Gamma conditional posterior pdf. Non-
informative prior for group parameter vector is the uniform dis-
tribution; hence, its conditional posterior is just the likelihood
formed by subjects’ parameter vectors, and consequently, has a
Gaussian distribution. Finally, group covariance matrix has con-
ditionally an inverse-Wishart distribution (for more information
about these distributions and hierarchical models, see [20]).
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