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Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based
on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on
the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found,
on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to
a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a
key-dependent hash function.
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1. INTRODUCTION

In this study, we develop algorithms for summarizing a long
audio signal into a concise signature sequence, which can
then be used to identify the original record. We call this sig-
nature the perceptual hash function, because it is purported
to reflect the perceptible component of the content. In other
words, we aim to obtain audio hash functions that are in-
sensitive to “reasonable” signal processing and editing op-
erations, such as filtering, compression, sampling rate con-
version and so forth, but that are otherwise sensitive to the
change in content. Such perceptual hash functions can be
used as a tool to search for a specific record in a database,
to verify the content authenticity of the record, to monitor
broadcasts, to automatically index multimedia libraries, to
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Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

detect content tampering attacks, and so forth [1]. For exam-
ple, in database searching and broadcast monitoring, instead
of comparing the whole sample set, the hash sequence would
suffice to identify the content in a rapid manner. In tamper
proofing and data content authentication applications, the
hash values of the applicant object are compared with hash
values of the stored ones.

In the watermarking context, it is desirable to embed
in a document a content-dependent signature, coupled with
ownership or authorship label. Such content-dependent wa-
termarks [2] are instrumental against copy attacks, where
the attacker may attempt to fool the system by copying the
embedded watermark from one document and transport it
into another document. The hash values can also be used
for the purpose of synchronization in watermarking [3],
where multiple embedding is often used as a solution against
desynchronization attacks. However, one may not want to
embed the watermark into several parts of the stream. In-
stead, perceptual hash values can be used to select frames
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pseudorandomly with a secret key, where the watermark will
be embedded, and locate them later after modifications and
attacks.

The two desiderata of the perceptual hash function are
robustness and uniqueness. The uniqueness qualification
implies that the hash sequence should reflect the content of
the audio document in a unique way. Uniqueness is some-
times called randomness, which implies that any two dis-
tinct audio documents yield different and apparently ran-
dom hash values. Consequently, the collision probability, the
probability that two perceptually dissimilar inputs yield the
same hash value, is minimized. The robustness qualifica-
tion entails that the audio input can be subjected to cer-
tain nonmalicious manipulations, such as analog-to-digital
(A/D) conversion, compression, sample jitter, moderate clip-
ping and so forth, and yet it should remain, in principle, the
same in face of these modifications. The line of demarcation
between what constitutes a nonmalicious signal processing
operation and what constitutes a change in content depends
on the application.

There exists a number of perceptual audio hashing al-
gorithms in the literature. Haitsma et al. proposed an audio
hashing algorithm [4], where the hash extraction scheme is
based on thresholding of the energy differences between fre-
quency bands. They split the incoming audio into overlap-
ping frames and, for each of the 33 logarithmically spaced
frequency bands, they compute the energy. A 32-bit hash
sequence is obtained for each time frame by comparing
adjacent band energies. In another algorithm, Mihçak and
Venkatesan [5] extract statistical parameters from randomly
selected regions of the time-frequency representation of the
signal. These parameters are discretized to form the hash val-
ues via an adaptive quantization scheme. The hash sequence
is further rendered robust with an error correction decoder.
The robustness of the algorithms against signal processing
distortions and their employment for database searching are
detailed in [4, 5]. In another vein, hash functions are used
for database search purposes in [6, 7, 8, 9]. Burges et al. pro-
pose a distortion discriminant analysis technique to sum-
marize the input audio signal [6]. They first compute the
log spectrum by MCLT (modulated complex lapped trans-
form) and summarize the spectral coefficient by PCA (prin-
cipal component analysis) in a hierarchical manner. Kurth
and Scherzer propose a database search technique by sum-
marizing the audio signal through an up-down quantization
and block coding method [7]. Sukittanon and Atlas use mod-
ulation frequency features as a summarization of audio sig-
nals and use them for database searching [8]. They charac-
terize the time-varying behavior of the audio signal through
modulation frequency analysis. After acoustic frequency de-
tection by Fourier analysis, a wavelet transform is proposed
for modulation frequency decomposition. Gruhne extracts a
set of psychoacoustic features, such as the partial loudness
in different frequency bands, spectral flatness measure, and
spectral crest factor, from the spectrum of the audio signal
and uses them as features in database searching [9]. Other
studies are focused on audio signal for classification pur-
poses, such as music, speech, silence and noise only frames

[10, 11, 12]. Lu et al. use zero-crossing rate, short-time en-
ergy ratio, spectrum flux, LSP (line spectral pair) distance
measure, band periodicity, and noise frame ration as fea-
tures of the audio. Foote and Logan use mel-frequency cep-
stral coefficients as a feature set. In another study [13] Zhang
and Kuo use energy, zero-crossing rates, harmonicity, and
short-time spectra to determine that the incoming segment
is speech, music, noise, applause, rain, cry, thunder, and so
forth.

In this work, we investigate three perceptual audio hash-
ing algorithms. Two of them operate in the time domain,
and use the inherent periodicity of audio signals. In these
schemes, the time profile of the dominant frequency of the
audio track constitutes the discriminating information. The
third one uses the time-frequency landscape, as given by
the frame-by-frame MFCCs (mel-frequency cepstral coeffi-
cients), which is further summarized via singular value de-
composition. The two periodicity-based schemes are original
propositions and the third MFCC-based one is an improve-
ment on the work of [12]. We demonstrate the merit of these
hash functions in terms of correct identification probability
and in terms of verification performance in a database search
with corrupted documents.

The rest of the paper is organized as follows. In Section 2,
periodicity-based hash techniques and methods for estima-
tion of periodicity are presented. The audio hash method
based on the singular value decomposition is given in
Section 3. Experimental results are discussed in Section 4. Fi-
nally in Section 5, conclusions are drawn and feature studies
are discussed.

2. PERIODICITY-BASED HASH FUNCTIONS

We conjecture that the periodicity profile of an audio frame
can be used as a signature for identification and tamper con-
trol. The periodicity property of the audio signals has been
used in such applications as voice activity detection [14],
silence detection, and speech compression. We have con-
sidered two different periodicity-estimation methods, one
based on a parametric estimation, while the other method
is correlation based.

The block diagram of a generic periodicity-based hash
extraction is depicted in Figure 1. The incoming audio ob-
ject is processed frame by frame, and a single periodicity
value is extracted for each frame. The audio signal is pre-
processed in order to bring forward periodic behavior of the
signal. Ideally, the goal of smoothing in the preprocessing
stage [15] is spectral enhancement, that is, to remove spec-
tral characteristics due to the audio content, while leaving
spectral fine structure (fundamental frequency) intact. In-
verse linear prediction (LP) filtering is a common way of
performing this task. First a lowpass filter is applied fol-
lowed by a 4-tap linear prediction inverse filter. This sig-
nal is denoted as s0(i), i = 1, . . . ,N , and used in Sections
2.1, 2.2, and Section 3. The audio signal is then segmented
into overlapping frames, and each frame is windowed by a
hamming window in order to reduce edge effects. The fram-
ing rate is 25 milliseconds and the overlap percentage is 50%
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Figure 1: Block diagram of the hash extraction based on the two periodicity-estimation methods.

(i.e., the overlap length is 12.5 milliseconds), which are ad-
equate to extract quasistationary segments from the audio
signal. The period estimator operates on each such processed
audio frame. Finally, the estimated time-series of frame-by-
frame periods is postprocessed by a seven-tap finite impulse
filter in order to mitigate the effects of distortions that could
lead to a desynchronization effect. The term desynchroniza-
tion refers to the fact that, as one searches for an audio docu-
ment given a short clip (say, 5 seconds), the starting and ter-
minating points of its hash will appear as randomly located
on the whole hash sequence of the document. The smooth-
ing mitigates this abrupt starting and stopping of the hash
portion of the clip.

A few words are in order for the selected range of au-
dio frequencies. It is known that the typical dominant fre-
quency for human voice is between 50–400 Hz, whereas it
can be much wider for music signals. However, even though
the frequencies present in music can span a much wider
range (about 50–4000 Hz), the range of 50–400 Hz still en-
compasses most of the musical sounds. For instance, Fitch
and Shabana determined that the pitch period for guitar, sax-
ophone, tanpura (an Indian instrument), and a male singing
voice are 147 Hz, 154.7 Hz, 157.5 Hz, and 110.8 Hz, respec-
tively [16]. Though, depending of the required accuracy and
complexity constraints, some wider pitch range can always
be accommodated, we will employ the 50–400 Hz range in
our hash study. It is known that the audio signals have also
nonperiodic intervals. Thus whenever a pitch algorithm re-
turns a low-pitch confidence value, we will treat the frame
as aperiodic and assign a score of zero for its periodic-
ity.

2.1. Periodicity measure by least-squares estimation

Irwin investigated an optimum method for measuring
the periodicity of audio signals by applying a least-
squares periodicity-estimation (LSPE) technique [17]. In this
scheme, the signal is conceived to be composed of a periodic
and a nonperiodic component. The LSPE solves for the pe-
riod P0 that would maximize the energy of a periodic compo-
nent with a given N-sample input signal s0(i), i = 1, . . . ,N .
The details of the computation for each frame are in [18].
Let

s(i) = s0(i) + n(i), for i = 1, 2, . . . ,N , (1)

where s0(i) is a periodic component of input signal and n(i) is
the nonperiodic component. The periodic component pos-
sesses the property s0(i) = s0(i + kP0) for integer k and where

P0 is the period of s0(i). We now let P̂0 be our estimate and
ŝ0(i; P̂0) the corresponding estimate of the periodic compo-
nent. Omitting for simplicity the P̂0 dependence, the estimate
ŝ0(i) is obtained from the input signal:

ŝ0(i) =
K0∑
h=0

s
(
i + hP̂0

)
K0

, 1 ≤ i ≤ P̂0, Pmin ≤ P̂0 ≤ Pmax, (2)

where Pmin and Pmax are the lower and upper bounds of the
period, and K0 = [(N − i)/(P0)] + 1 is the number of peri-
ods of ŝ0(i) fitting in the analysis frame. In (2), the variable
i enumerates the folded signal samples within the range of
hypothesized period P̂0.

The objective of the least-squares method is to find the
period P̂0 that minimizes the mean square error

∑N
i=1[s(i) −

ŝ0(i)]2 over each analysis frame, which is shown to be equiva-
lent to maximizing the

∑N
i=1 ŝ

2
0 (i) [18] component within the

observed signal. Friedman [18] suggests that the estimated
weighted energy of ŝ0(i) with normalization with respect to
signal energy can be a periodicity measure as follows:

R1
(
P̂0
) = I0

(
P̂0
)− I1

(
P̂0
)∑N

i=1 s2(i)− I1
(
P̂0
) , (3)

which, when maximized, yields an unbiased estimate of the
periodicity. In this expression the functional I0(P̂0) repre-
sents the estimated weighted energy of ŝ0(i), and I1(P̂0) is the
energy contribution of the diagonal terms of the weighted
energy sums. These functionals are defined as follows:

I0
(
P̂0
) = P̂0∑

i=1

[∑K0
h=0 s

(
i + hP̂0

)]2

K0
,

I1
(
P̂0
) = P̂0∑

i=1

K0∑
h=0

s2
(
i + hP̂0

)
K0

.

(4)

Notice that the energy contribution of the diagonal terms is
subtracted from the total signal energy before normalization.
For each frame, R1(P̂0) as in (3) is computed for values of P̂0

between Pmin and Pmax, and P̂0 that maximizes the value of
R1(P̂0) is determined as the estimated period of the processed
frame. The R1(P̂0) takes values in the interval [0,1] and acts
as a confidence score for a frame to be periodic or not.

We thresholded this confidence score at the value of 0.5,
such that any frame that reports a value of R1(P̂0) less than
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Figure 2: (a) CPE results: periodicity profiles of hard rock music, speech, and pure noise. (b) LSPE results: periodicity profiles of hard rock
music, speech, and pure noise.

0.5 is labeled as aperiodic. The experiments that we have
conducted show that the periodicity score, R1(P̂0), obtained
from white noise is generally below the threshold 0.5, as
in Figure 2b. Values of the threshold above and below the
threshold of 0.5 did not improve the performance. Note that
Tucker [14] also found the same empirical result.

2.2. Periodicity measure by a correlation-based
analysis

The first peak of the autocorrelation of the linear prediction
residue indicates the pitch period and is commonly used as a
pitch estimator. This correlation-based periodicity estimate,
called CPE, has the following expression:

P̂0 =
arg maxR(k), for k �= 0 if R

(
P̂0
) ≥ 0.5,

0 if R
(
P̂0
)
< 0.5

R(k) =
(
1/(N − k)

)∑N−k
i=0 s(i)s(i + k)

(1/N)
∑N

i=0 s2(i)
.

(5)

The efficacy of the CPE method is enhanced by a four-tap
prediction and decimation process. The advantage of the
correlation-based method is that it requires about three times
less computation as compared to the parametric estimation
method in Section 2.1. We decided that the audio frame is
pitchless, without an explicit periodicity, as in the case of un-
voiced speech or silence, whenever the first correlation peak
in R(k) of (5) falls below 0.5.

One can question whether the periodicity profile is avail-
able from any audio track, for example, a hard rock track.

Figure 2 illustrates the periodicity time sequence of a popu-
lar hard rock song (“Be quick or be dead” from Iron Maiden).
It can be observed that, albeit lower as compared to speech,
even hard rock music results in some estimated periodicity
profile, which is definitely much higher than the noise case.
Other hard rock songs gave similar results.

3. A TRANSFORM-DOMAIN-BASED HASH FUNCTION

In this section, we focus on transform-domain hash func-
tions in contrast to the previous section, where we essentially
worked on the time domain. More specifically, the audio
signal is divided into possibly overlapping frames and each
frame is represented by its mel-frequency cepstral coefficients
(MFCCs), which are short-term spectral-based features [15].
A singular value decomposition (SVD) further summarizes
these features. Note that in the SVD-based method we use
the original signal, and not its lowpass filtered version, as in
the periodicity-based schemes.

The block diagram of the computational procedure for
MFCC features is given in Figure 3. One computes the dis-
crete Fourier transform (DFT) of each windowed frame,
and the log magnitudes of these coefficients are retained.
This spectrum is then partitioned into mel-spaced frequency
bins in accordance with the human auditory system’s non-
linear perception, which is linear below 1 kHz and logarith-
mic above [15]. The mel-spectral components are averaged
to obtain a smooth spectrum through mel-filtering. Mel-
filters have nonlinear and overlapped mel barks [15]. Finally,
MFCC features are obtained by applying a discrete cosine
transform (DCT) on the mel-spectral vectors. More specif-
ically, one starts by computing the N points (DFT) of the
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Figure 3: Block diagram of the hash extraction based on the MFCC method.

input signal

S(k) =
N−1∑
i=0

s(i)e− j2πik/N , 0 ≤ k ≤ N − 1. (6)

One also defines a filterbank of M filters, where the triangular
filters, Hm(k); m = 1, 2, . . . ,M; k = 0, 1, . . . ,N − 1, have in-
creasing bandwidth according to the mel-scale. These filters
are used to compute the average spectrum around each cen-
ter frequency in (6). The log-energy spectrum at the output
of each filter is computed as

Ψ(k) = ln

N−1∑
k=0

∣∣S(k)
∣∣2
Hm(k)

, 1 ≤ m ≤M. (7)

Finally the mel-frequency cepstrum is computed as the DCT
of the M filter outputs of (7):

c(n) =
M−1∑
m=0

Ψ(m) cos

(
πn(m− 0.5)

M

)
, 1 ≤ n ≤M. (8)

The number of MFCC terms in (8) is typically between 24
and 40, although for speech the first 13 cepstrum coefficients
are often used.

This results in an F ×M matrix, where each row consists
of the M MFCC values for a frame, and there are F rows,
the number of frames into which the whole audio signal has
been segmented. This matrix expresses the evolution of the
signal in the time-frequency landscape. A concise summary
of this landscape is computed by the SVD of the calculated
MFCC matrix. The singular value decomposition effectively
reduces the F ×M-dimensional MFCC-feature matrix into a
much smaller invertible square matrix. Thus, the given F×M
matrix is decomposed as A = UDVT , where A is the F ×M
matrix that we want to summarize, D is an F×M matrix with
only min(F,M) diagonal elements, U is an F × F orthogonal
matrix, and V is an M ×M orthogonal matrix. In general,
a few singular values (first few components of the diagonal
matrixD) give a good summarization of the matrixA [19]. In
our study we employed the first one to three singular values
only.

4. EXPERIMENTAL RESULTS

We have performed simulation experiments in order to test
(i) the robustness of the perceptual hash for identification,
where the critical behavior is the statistical spread of the hash
function when an audio document is subjected to various
signal processing attacks; (ii) the uniqueness of the percep-
tual hash, where the important behavior is the fact that the

hashes differ significantly between two different contents. In
other words, in the first case, we want to identify a document
(the genuine version) and its variants under signal process-
ing attacks. In the second case, we want to classify documents
with different contents, so that if we want to verify a docu-
ment, the others in the database appear as “impostors.” In a
decision-theoretic sense, the uniqueness property is related
to the probability of false alarm or false alarm rate (FAR),
while the robustness property is linked to the probability of
misses or false rejection rate (FRR).

In our database we used 900 3–4 second-long utterances,
which were distinct sentences in Turkish and recorded from
the same speaker. For uniqueness tests, recordings from the
same speaker represent the worst case, since there are only
differences in content, but no interspeaker differences. We
know at least that the pitch levels from the same speaker will
be closer than the pitch levels from different speakers. The
utterances were recorded in an acoustically shielded room
and digitized at a 16 kHz sampling rate. In addition we con-
ducted some experiments with music data, that is, 650 music
pieces overall, where the fragments had durations of 6 sec-
onds. These fragments were extracted from songs of popu-
lar artists, such as Celine Dion, Luis Miguel, Mariah Carey,
Rolling Stones, and U2. Each fragment was treated as a sepa-
rate object to be recognized.

4.1. Parameters used in the experiments

The settings of the feature parameters were as follows. For
the LSPE periodicity estimator, Pmin and Pmax were set, re-
spectively, to 40 and 320 samples, which means that the ad-
missible periods were between 50 Hz to 400 Hz for a 16 Hz
sampled signal. The frames, taken to be 25-millisecond long,
were overlapped by 50 percent. Frames were preprocessed by
first lowpass filtering them with a cutoff frequency of 900 Hz
and then through a 4-tap linear prediction filter [15]. For
the correlation-based periodicity method, the signal was dec-
imated by a factor of four before the correlation analysis was
performed. The resulting hash consisted of a sequence of 79
samples/s, which represents a compression of the signal by a
factor of approximately 200.

For the SVD-based method, we considered 13 features,
so that the MFCC data formed an F × 13 feature matrix. We
experimented with up to three singular values, and it was ob-
served that even a single singular value was often adequate.
This is again the basic tradeoff between uniqueness, which
improves by including more singular values, and robustness,
which conversely improves with a smaller number of eigen-
values. The hash size depends upon the number of frames
and the number of singular values chosen, which, for the
choice of 1 to 3 singular values, becomes 26, 52, and 78 sam-
ples per second, respectively. In our study we employed three



Perceptual Audio Hashing Functions 1785

singular values in order to make the hash size (which is 78
samples per second in that case) compatible with the other
two methods.

4.2. The simulated attacks

We programmed eleven types of attacks (some attacks also
applied to different degrees) to evaluate the performance of

the proposed hash functions. The hash sequence of the orig-
inal record (X( f ), f = 1, 2, . . . ,N) is compared with the
hash value of the attacked version (Y( f ), f = 1, 2, . . . ,N).
We used normalized correlation coefficient as the similarity
measure between the hash sequence of the original sound file
and that of the test file, that is, the modified file. This simi-
larity measure is defined as

r =

∣∣∣∣∣∣∣∣∣∣
N
∑

f X( f )Y( f )−∑ f X( f )
∑

f Y( f )√[
N
∑

f X2( f )−
(∑

f X( f )
)2
][

N
∑

f Y 2( f )−
(∑

f Y( f )
)2
]
∣∣∣∣∣∣∣∣∣∣

(9)

and takes values in the range (0,1), since the terms of the hash
sequence are always positive. We have also attempted to use
L2 distance as a similarity measure and compared the results
with correlation measures. The L2 distance that we have used
is given by

d = 1
N

√√√√√ N∑
f

(
X( f )− Y( f )

)2
. (10)

The attacks consist of upsampling by a factor 44.1/16 (fi-
nal rate 44.1 kHz), downsampling by a factor two (final rate
8 kHz), adding white Gaussian noise resulting in 20, 25, 30,
35 dB signal-to-noise ratios, denoising operations with and
without noise addition, pitch downconversion and upcon-
version by 1% and 2%, time compression by 2%, 4%, and
6%, random cropping by 8% and 10% of total length, tele-
phone filtering, and finally 3:1 amplitude compression below
10 dB and above 20 dB. Some of these attacks were slightly
audible, as in the cases of 20 and 25 dB additive noise, 2%
pitch conversions, 6% time compression, and 10% random
cropping. We have forced the attacks beyond their percep-
tion thresholds in order to gauge them, that is, to scale the
attacks up to their ultimate acceptable level to simulate the
worst cases in database search. By using several runs of the
attacks, the receiver operating curves (ROC) are calculated,
where the probability of correctly identifying an audio record
is plotted against the probability of falsely accepting another
audio track as the genuine version. The list of all attacks is
shown in Table 1.

The effects of the sample attacks are presented in
Figure 4, where we show the original audio clip and the at-
tacked versions of the clip (see Figures 4b and 4c) that have
inaudible or slightly audible modifications.

4.3. Robustness and uniqueness performance

We calculate the interrecord distances and the intrarecord
distances. The interrecord distances are the (dis-)similarity

Table 1: The attacks and levels used in the experiments.

Type of attack Attack level
Subsampling 16 kHz to 8 kHz
Upsampling 16 kHz to 44.1 kHz
Noise addition (20, 25, 30,
35 dB SNR) Additive white Gaussian noise

Denoise filtering
Wavelet-based denoising

after noise addition
Denoise filtering of clear signal Wavelet-based denoising
Raise pitch 1% and 2%
Lower pitch 1% and 2%

3:1 amplitude compression
below 10 dB

With CoolEdit prog.

3:1 amplitude compression
above 20 dB

With CoolEdit prog.

Time compression 2%, 4%, and 6%
Random cropping Total amount of 8% and 10%
Telephone filtering 135–3700 Hz
MP3 compression 32 Kbps

scores between altered (attacked) versions of a record and al-
tered versions of all other records. To this effect, for each of
the L records in the database we calculate the (dis-)similarity
to the remaining L − 1. Since there are 900 speech and 600
music records, we calculate a total amount of L(L − 1)/2 or
619, 970 distance values. The intrarecord distances are the
(dis-)similarity scores between the attacked versions of the
same audio segment. For this purpose we have randomly
selected 200 music records and 200 speech records and ap-
plied upon them twenty varieties of attacks, some with more
than one parameter setting as in Table 1. Thus we collected
20× 400 = 8000 intradistance figures.

Robustness characteristics

Robustness of a perceptual hash scheme implies that the hash
function is not affected by signal manipulations and edit-
ing operations, which do not change the perceived content.
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Figure 4: (a) Original spectrogram of the record. (b) Spectrogram after telephone filtering attack. (c) Spectrogram after attack with factor-
two downsampling.

The hash lengths are 79, 79, and 78 samples/s, respectively,
for LSPE, CPE, and SVD-MFCC techniques. Notice that we
could have made the SVD-MFCC rate smaller, that is, 26,
without compromising any of its robustness performance.
However, experiments have shown that uniqueness suffers if
we consider less than three eigenmodes.

In Figures 5 and 6, we present the histograms of the sim-
ilarity (correlation coefficient) scores for speech and music
records. The dispersion of the histograms on the right are
indicative of the degree to which the hash value is affected
by the signal processing attacks, hence its robustness. His-
tograms on the left indicate the randomness of the hash,
hence uniqueness, as explained at the end of this section. In
Figure 7, the results with L2 distance as the similarity mea-
sure are also presented. For the L2 distance, the spread of the
left histograms shows the degree to which the hash value is
affected by the signal processing attacks since ideally their
L2 distance should be zero. Comparison of the distance his-
tograms and similarity of performance scores has indicated
to us that the specific distance metric used does not have
much effect.

In addition, we tested the 32 kbps MP3 compression at-
tack using the commercial CoolEdit compressor program.
The experiments were carried out with 200 speech and 200
music excerpts where we compared hash values of the origi-
nal unmodified audio files with those of MP3 compressed-
decompressed files. The minimum and average similarity
measures (normalized correlation scores) for CPE, LSPE, and
SVD-MFCC methods are shown in Table 2. Thus even at
such low compression rates of MP3, the proposed hashing
scheme is adequately robust.

Uniqueness characteristics

We tested whether hash sequences could be confounded in
a large repertoire of audio files. Thus, for each of the 900
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Figure 5: Histograms of the difference of the hash functions ex-
tracted from speech data and using the correlation measure: differ-
ent objects (solid lines) and distorted versions of the same object
(dashed lines). (a) LSPE, (b) CPE, and (c) SVD-MFCC.

utterances and 650 music records, the hash value was com-
puted and compared with all the other ones. The utter-
ances were 3–4 second-long distinct sentences, uttered by the
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Figure 6: Histograms of the difference of the hash functions ex-
tracted from music data and using the correlation measure: differ-
ent objects (solid lines) and distorted versions of the same object
(dashed lines). (a) LSPE, (b) CPE, and (c) SVD-MFCC.

same speaker. Notice that the use of only one speaker rep-
resents the worst case for confounding, as we forego inter-
speaker variability. The music records are chosen from dif-
ferent types of music as explained above. Ideally, the similar-
ity score between hashes should be zero for the correlation
measure and as large as possible for the L2 distance. The re-
sults are presented in Figures 5 and 6, for speech and mu-
sic with correlation measure, and in Figure 7 for the L2 dis-
tance.

It can be observed from Figures 5, 6, and 7 that the LSPE
and CPE have very similar score distributions, with LSPE
slightly more compact under attacks. SVD-MFCC seems to
hold faster under attacks, as its robustness performance is
better than the others. SVD-MFCC is similarly somewhat
superior to the periodicity-based hash methods in that the
impostor distribution overlaps less with the genuine distri-
bution. Furthermore, there was not a significant difference
between speech and music documents or a major difference
between normalized correlation and L1 (not plotted) or L2

distances.

4.4. Identification and verification tests

The ultimate proof of the robustness and uniqueness prop-
erties of the proposed hash functions will show in their iden-
tification and verification performances. The identification
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Figure 7: Histograms of the difference of the hash functions ex-
tracted from speech data and using L2 distance measure: differ-
ent objects (solid lines) and distorted versions of the same object
(dashed lines). (a) LSPE, (b) CPE, and (c) SVD-MFCC.

Table 2: Minimum and average correlation scores with the three
hashing methods.

Hashing method Minimum score Average score

CPE 0.848 0.920

LSPE 0.828 0.911

SVD-MFCC 0.982 0.993

problem is to recognize an audio record in a database of
other audio records. For example, a short record from within
a song can be given, and the algorithm has to identify the
song within a large database of songs through this partial
evidence. The identification or detection performance can
thus be measured in terms of the percentage of correct re-
calls from a database. The verification problem, on the other
hand, occurs when we want to prove and disprove that an
audio record is indeed what it is claimed to be. In a verifi-
cation experiment, one must test both the “genuine record”
as well as all the other “impostor records” in their various
altered versions, transfigured by the attacks described above.
The verification performance is best given by the receiver op-
erating characteristic (ROC) curves. In ROC we plot correct
detection (or alternately, the probability of FRR) versus FAR.
We have a false alarm situation when an impostor record
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Figure 8: ROC plots of the three methods, where FARs are given in percentages, and where hash function similarity is measured with
correlation coefficient: (a) speech data set and (b) music data set.

(that is, any other content) is identified in lieu of the genuine
record; in contrast, we have a correct detection whenever the
claimed identity of the genuine record is detected correctly,
that is, we hit the correct content. Finally, we have a false re-
jection, whenever the claimed identity of the genuine record
is rejected by the test.

The correlation-based FAR and correct detection perfor-
mance for both speech and music are given in Figure 8, while
Figure 9 shows ROC curves based on the L2 distance. These
experiments reveal that, in general, the hash function derived
from SVD-MFCC has better performance, especially in the
low range of FARs. On the other hand, LSPE has slightly bet-
ter performance than either CPE or SVD-MFCC but only at
higher FAR scores.

For identification purposes, we choose random parts of
the records to be identified as test data (a token), and search
for the object in the database where the most similar hash
occurs. For speech, the tokens are chosen as 1.5-second clips
within the records of 3–5 seconds, and for music, the to-
ken is chosen as a 3-second clip within records of 6 sec-
onds. We position the test segments randomly within the
original records in order to simulate misalignments. The
correct detection rates are summarized in Tables 3a and
3b, respectively, for the original objects (unattacked) and
for their attacked versions. The performance with attacked
records is the average of the scores of all the attacks described
in Section 4.2. These results indicate that all three percep-
tual hashing techniques perform on a par, with SVD-MFCC
marginally superior. Generally LSPE performs slightly bet-
ter than CPE except when applied to a database consisting
only of music. SVD-MFCC performs better than the other
two methods, though for music only, CPE and SVD-MFCC
are alike.
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Figure 9: ROC plots of the three methods, where FARs are given
in percentages, and where hash function dissimilarity is measured
with L2 metric for the speech data set.

In a separate experiment, we tested the effect of the to-
ken length on identification. For relatively small databases, as
the token length increases the probability of correct detection
saturates quickly toward a well-defined asymptote. Hence we
increased the database size to a more challenging figure of
2302 6-second excerpts from popular music, and varied the
token size between one and five seconds in steps of one sec-
ond. The results, as tabulated in Table 3c, show that token
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Table 3: (a) Identification performance of the original speech and
music documents for different hash functions. (b) Identification
performance of the attacked speech and music documents for dif-
ferent hash functions. (c) Identification performance of the 2302
music documents with different search sample sizes.

(a)

Database size LSPE CPE SVD-MFCC

(original documents) performance performance performance

200 (mixed) 100% 99.5% 100%

650 (music) 100% 99.84% 99.84%

900 (speech) 98.15% 98% 100%

1550 (mixed) 96% 95.6% 96.7%

(b)

Database size LSPE CPE SVD-MFCC

(attacked documents) performance performance performance

200 (mixed) 99% 98.9% 99.2%

650 (music) 99.4% 99.8% 99.78%

900 (speech) 96.1% 94.5% 98.1%

1550 (mixed) 89.1% 88.3% 90.2%

(c)

Search LSPE CPE SVD-MFCC

sample size performance performance performance

1 s 66.5% 75.1% 76%

2 s 82.6% 88.4% 95%

3 s 95.5% 96.5% 99%

4 s 98.2% 99.8% 99.9%

5 s 100% 100% 100%

sizes equal to or longer than three seconds yield adequate
performance. The SVD-MFCC method performs better than
the two periodicity-based methods at all token sizes.

The conduct of the verification experiments can be de-
duced from the ROC curves. In these experiments, if the
maximum similarity between a test hash and any other hash
in the database (other than the test data in its original or al-
tered forms) exceeds a predetermined threshold, then the test
data is marked as a probable false detection. Conversely, one
can present an “impostor” document, and see whether it ever
matches our target document, that is, if their similarity score
remains above a threshold. We gleaned from the ROC curves
the results for both the equal error rate case (FRR equal to
FAR), and for the FRR = 1% case. Table 4 summarizes the
outcome of the verification experiments. The experiments
show that in general SVD-MFCC performs better than the
other two hash techniques. However, for a data set consisting
only of music, the CPE performance was similar to that of
SVD-MFCC.

4.5. Effect of the length of the hash function
We explored the effectiveness of the hash function as a func-
tion of its length. Thus we systematically reduced the hash
size from 80 samples/s to 6 samples/s, by reducing the num-

Table 4: Verification performance of the attacked speech and music
documents for different hash functions.

Methods
900 speech 650 music 1550 mixed

FAR = FRR performance

LSPE performance 99.08% 99.32% 97.1%

CPE performance 99.05% 99.73% 96.9%

SVD-MFCC performance 99.13% 99.73% 97.2%

FAR = 1% performance

LSPE performance 98.48% 99.46% 97.8%

CPE performance 98% 100% 97.7%

SVD-MFCC performance 99.18% 100% 98.1%
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Figure 10: Receiver operating characteristics for different hash sizes
in samples/s (s/s). 78 s/s: 3 SVDs, 25-millisecond frame length;
26 s/s: 1 SVD, 25-millisecond frame length; 16 s/s: 1 SVD, 40-
millisecond; 6 s/s: 1 SVD, 100-millisecond frame length.

ber of singular values considered and/or by varying the
frame size. The receiver operating characteristics pictured
in Figure 10 show that the system is quite insensitive to the
size of the hash, and that its size can be reduced by more
than an order of magnitude. For example, at 1% false ac-
ceptance rate, the probability of false rejection still remains
under 2%.

4.6. Security aspects of the audio hash functions

The security of the hash extraction becomes important in au-
dio authentication schemes. One common way to provide
hash security is to devise a key-based scheme such that for
two different keys, K1 and K2, the resulting hash functions
become totally independent. Thus we minimize the proba-
bility of collision, that is, we want to guarantee that two dis-
tinct inputs yield different hash functions and that the hash
sequences are mutually independent.
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Figure 11: Histograms of the difference of the hash functions with 900 speech records: (a) hashes of the different objects (solid line) and
those of the attacked versions of the same object (dashed line); (b) hashes obtained from the same object with different keys.

Notice that secure fingerprinting requires that the pirate
should not be capable of extracting the hash value of the
content without knowledge of some secret key. This would,
for example, allow him to change the content while preserv-
ing the hash, that is, find a collision which would circum-
vent any hash-based authentication mechanism being used.
As another example, it could also enable him to manipulate
the bits while preserving the content and yet change the hash.
This would be done, for example, when a pirate may want to
avoid being detected by a copyright controller for unautho-
rized use of some content.

One way to arrive at a key-based hash function is to
project the resulting hash sequences onto key-dependent
random bases. Another scheme would be to subject the
analog hash sequence to random quantization [20]. In this
scheme, the hash sequence is quantized using a random-
ized quantizer, and the quantizer itself becomes the source
of randomness in the hash function’s output. A third scheme
could be based on random permutation of the observation
frames with possible overlaps. Thus we generate a key-based
sequence of visiting positions and translate in saccades the
frame window according to this sequence (recall that we used
25-millisecond windows with 50% overlap).

We have implemented such a key-instrumented hash-
ing method with the LSPE-based technique. Robustness
and uniqueness test results with keyed hash are shown in
Figure 11a. We have generated 1000 hash values from an au-
dio clip using different permutation matrices, and as before,
the similarity of all possible pairs of the hash values (thus
1000∗ 999/2 = 499500 pairs) are calculated. The histogram
is presented in Figure 11b. Similarity closer to zero indicates
the amount of independence of keyed hashes. It can be de-
duced from the figure that the similarities between the hashes
of the same object with different keys are as small as the sim-
ilarity of distinct objects. Thus the hash values are signifi-
cantly dependent on the key information.

4.7. Broadcast monitoring
One prominent use of audio and video hash functions is in
the field of broadcast monitoring, that is, either to collect
statistics about the instant and the number of times a spe-
cific content has been broadcasted, or alternately, to verify
that a claimed broadcast content matches the reference con-
tent.

This can be done on-line in real time, as the hashing al-
gorithms have number of operations that are an order-of-
magnitude simpler than sophisticated audio compression al-
gorithms. Suppose a T-second segment is being sought. As
an audio window (W > T , possibly W � T) is captured
and stored, it will be hashed in steps of ∆T interval, over-
all resulting in W/∆T hash calculations and comparisons. To
give an example, we have observed that scanning steps of 1.25
seconds suffice for records of 5 seconds (see Figure 12). Note
that this search with a continuously sliding window over a
continuous stream is reminiscent of the fade-over attack in
video [21]. In the audio slide-over, one audio record grad-
ually passes or becomes eclipsed by another one. Figure 12a
shows the trace of hash correlation scores in the course of
time. In this example, a 5-second excerpt is being sought
within a 258.4-second-long record of audio (“Endless Love”
by Mariah Carey). One can notice that the only peak above
the threshold occurs at the exact point where the two records
match. In Figure 12b, we expanded the peaking region and
showed the sensitivity of the hash to the slide-over effect. As
the window slides past the exact matching instance of the
record and starts incorporating audio material from the fu-
ture (past), the correlation of the hashes decreases gracefully.
We have experimented with several window sizes T , from
1 second to 5 seconds to determine the width of the main
lobe for a given threshold. This is defined as the amount
by which the window can slide to cover new audio material
while discarding a proportional amount of its past. We have
observed that the main lobe is equal to T/4: thus for example,
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Figure 12: (a) Broadcast audio monitoring: trace of correlation scores when a 5-second audio excerpt is being continuously sought in a
258.4-second record. The scan step is ∆T = 1.25 seconds. (b) Sensitivity of the hash to the slide-over effect against the scan step size when
the length of the excerpt is 5 seconds.

when searching a record of 5 seconds, one can partially cover
it, say, the first or the last 0.75T seconds and yet be able to
identify it. In other words, hash remains invariant, provided
the amount of overlap between the search window and the
target record is at least 75%. The main lobe is important in
determining the scanning step size for hashing in the broad-
cast monitoring application.

4.8. Intraspeaker and interspeaker performance

It is intriguing to investigate whether the hash scheme can
survive variability due to speaker variability, whether the in-
terspeaker or the intraspeaker type. The speaker variability
emerges in the pitch, formant, and prosodic features, and
overall they may cause sufficient changes to make a speech
object look like another object. A caveat is that the hash
function is not intended to be a tool for speaker or speech
recognition, let alone a speaker-independent recognition al-
gorithm. Since speech record identification would perform
worse when different speakers were involved as compared to
a single speaker case, we concentrated our attention on in-
traspeaker variability. For this purpose, we recorded 10 3-
second sentences, each uttered 10 times, from 5 speakers,
possibly with varying prosody. The hash correlation scores
were only computed in the intramode, that is, between utter-
ances of the same speaker. Figure 13a shows the hash corre-
lation scores for three different speakers, where each plot dis-
plays the correlations of utterances by a single speaker (one
utterance versus the other 9 utterances of the same speaker).
One can see that the correlation scores (intraspeaker scores)
vary significantly, and in fact can sometimes reach quite low
values below the threshold. Another proof of the fact that
content hunting (identification/verification) will not work
very well even for different utterances of the same speaker
is given in the hash distance histograms in Figure 13a.

These histograms were obtained by calculating the 450 dis-
tances between 10 utterances of 10 sentences from 5 speak-
ers. Superposed on these histograms is the plot of correlation
without speaker variability taken from Figure 5. At the same
threshold value of 0.5, the recognition rate drops down to
0.77 from 0.98 to 1.0. In summary, the perceptual hashing
scheme does not operate well under the speaker variability
“attack.”

5. CONCLUSION

We have constructed three novel perceptual audio hash func-
tions to enable content-oriented search in a database and/or
as an instrument for security protection. We studied the veri-
fication and identification performance of the hash functions
in a database composed of speech and music records. An im-
portant conclusion was that all three hash functions (LSPE,
CPE, and SVD-MFCC), and in particular, the SVD-MFCC
variety, perform satisfactorily in the identification and ver-
ification tasks. In fact, their performance resists a large va-
riety of attacks, most of which have been pushed to their
perceptually noticeable thresholds. A second conclusion is
that these methods collapse the input audio file into a fin-
gerprint stream of a much smaller size, typically from 16 kHz
sampling rate to 26 samples per second, which represents re-
duction by a factor of more than 600. In fact, one need not
even store the whole fingerprint from an audio document,
but sub-fingerprints would suffice. For example, longer doc-
uments were identified from their much shorter fingerprint
sections without significant performance degradation. The
proposed hashing scheme can capture in real-time a target
record by scanning longer records, like continuous broad-
casting. It, however, cannot be applied in general when intra-
and interspeaker variability is involved.
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Figure 13: Typical hash correlations for speech: (a) three different sentences uttered by the same speaker 10-fold with possibly differing
prosody; (b) histogram of hash correlations for speech (5 speakers, 10 sentences, 10 utterances). Intraspeaker graph: same speaker and same
sentences, but different utterances; intersentence graph: same speaker but different sentences; intrasentence graph: distorted versions of the
same record with attacks as in Table 1.

There are several avenues along which this research will
proceed. Two of the immediate problems are the capacity as-
sessment and binarization of the hash functions. Firstly, as
the database climbs into tens of thousands of audio doc-
uments, the identification and verification capacity of the
hash functions remains to be determined. Secondly, the hash
functions need to be converted into a binary string. Vari-
ous quantization strategies can be envisioned, such as ran-
dom quantization [5] and median-based quantization [21]
or an appropriate vector quantization, such as tree vec-
tor quantization for computational efficiency. The binariza-
tion is needed on one hand for both storage and more
rapid search. A judicious binary representation, for exam-
ple, coarse-to-fine content representation, can accelerate the
database search.
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