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Abstract. In this work we comprehensively categorize image qual-
ity measures, extend measures defined for gray scale images to
their multispectral case, and propose novel image quality measures.
They are categorized into pixel difference-based, correlation-based,
edge-based, spectral-based, context-based and human visual sys-
tem (HVS)-based measures. Furthermore we compare these mea-
sures statistically for still image compression applications. The sta-
tistical behavior of the measures and their sensitivity to coding
artifacts are investigated via analysis of variance techniques. Their
similarities or differences are illustrated by plotting their Kohonen
maps. Measures that give consistent scores across an image class
and that are sensitive to coding artifacts are pointed out. It was
found that measures based on the phase spectrum, the multireso-
lution distance or the HVS filtered mean square error are computa-
tionally simple and are more responsive to coding artifacts. We also
demonstrate the utility of combining selected quality metrics in build-
ing a steganalysis tool. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1455011]

1 Introduction

Image quality measures~IQMs! are figures of merit used
for the evaluation of imaging systems or of codin
processing techniques. In this study we consider sev
image quality metrics and study their statistical behav
when measuring various compression and/or sensor
facts.

A good objective quality measure should reflect the d
tortion on the image well due to, for example, blurrin
noise, compression, and sensor inadequacy. One exp
that such measures could be instrumental in predicting
performance of vision-based algorithms such as feature
traction, image-based measurements, detection, track
and segmentation, etc., tasks. Our approach is diffe
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from companion studies in the literature that focused
subjective image quality criteria, such as those in Re
1–3. In a subjective assessment measures characterist
human perception become paramount, and image quali
correlated with the preference of an observer or the per
mance of an operator for some specific task.

In the image coding and computer vision literature, t
most frequently used measures are deviations between
original and coded images,4–6 with varieties of the mean
square error~MSE! or signal to noise ratio~SNR! being the
most common measures. The reasons for their widesp
popularity are their mathematical tractability and the fa
that it is often straightforward to design systems that mi
mize the MSE. Raw error measures such as the MSE w
best when the distortion is due to additive noise conta
nation. However they do not necessarily correspond to
aspects of the observer’s visual perception of the error7,8

nor do they correctly reflect structural coding artifacts.
For multimedia applications and for very low bit ra

coding, there has been an increase in the use of qu
measures based on human perception.9–14 Since a human
observer is the end user in multimedia applications, an
age quality measure that is based on a human vision m
seems to be more appropriate for predicting user acc
tance and for system optimization. This class of distort
measure in general gives a numerical value that will qu
tify the dissatisfaction of the viewer in observing the repr
duced image in place of the original~although Daly’s VPD
map13 is an example opposite to this!. The alternative is the
use of subjective tests in which subjects view a series
reproduced images and rate them based on the visibilit
the artifacts.15,16 Subjective tests are tedious, time consu
ing and expensive, and the results depend on various
tors such as the observer’s background, motivation, e
and really actually only the display quality is being a
sessed. Therefore an objective measure that accurately
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Statistical evaluation of image quality
dicts the subjective rating would be a useful guide wh
optimizing image compression algorithms.

Recently there have been efforts by the Internatio
Telecommunications Union~ITU! to establish an objective
measurement of video quality. Thus within the context
the distribution of multimedia documents, video progra
ming, in particular, in-service continuous evaluation
video quality, is needed. This continuous video quality
dicator would be input to the network management, wh
must guarantee a negotiated level of quality of service. O
viously such quality monitoring can only be realized wi
objective methods.17,18 It must be pointed out, howeve
that subjective assessment, albeit costly and time cons
ing, if not impractical, is accurate. Objective methods,
the other hand, can at best try to emulate the performa
of subjective methods, and utilize knowledge of the hum
visual system.

Similarly for computer vision tasks, prediction of th
algorithmic performance in terms of imaging distortions
of great significance.19,20 In the literature the performanc
of feature extraction algorithms, like lines and corners19

propagation of covariance matrices,20 and quantification of
target detection performance and ideal obser
performance,21–23 have been studied under additive noi
conditions. It is of great interest to correlate coding a
sensor artifacts with this kind of algorithmic performanc
More specifically, one would like to identify image qualit
metrics that can accurately and consistently predict the
formance of computer vision algorithms that operate
distorted image records, the distortions being due to co
pression, sensor inadequacy, etc. An alternative use of
age quality metrics is in inverse mapping from metrics
the nature of distortions.24 In other words, given the imag
quality metrics, one tries to reconstruct the distortions~e.g.,
the amount of blur, noise, etc., in distortion coordinat!
that could have resulted in the measured metric values

In this paper we study objective measures of image q
ity and investigate their statistical performance. Their s
tistical behavior is evaluated first, in terms of how discrim
nating they are to distortion artifacts when tested on
variety of images using the analysis of variance meth
The measures are then investigated in terms of their mu
correlation or similarity in the form of Kohonen maps.

Twenty-six image quality metrics are listed and d
scribed in Appendix A and summarized in Table 1. The
quality metrics are categorized into six groups according
the type of information they use. The categories used a

1. pixel difference-based measures such as mean sq
distortion;

2. correlation-based measures, that is, correlation
pixels, or of the vector angular directions;

3. edge-based measures, that is, displacement of
positions or their consistency across resolution lev

4. spectral distance-based measures, that is, the Fo
magnitude and/or phase spectral discrepancy o
block basis;

5. context-based measures, that is, penalties base
various functionals of the multidimensional conte
probability;

6. human visual system~HVS!-based measures, that i
l
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measures either based on the HVS-weighted spec
distortion measures or~dis!similarity criteria used in
image base browsing functions.

We define several distortion measures in each categ
The specific measures are denoted byD1, D2, etc. in Ap-
pendix A, in the pixel difference category, asC1, C2, etc.
in Appendix B, in the correlation category and so on f
ease of reference in the results and discussion sections

The paper is organized as follows: The methodology a
data sets are given in Sec. 2. The descriptions of the
cific measures used are relegated to the Appendix and
six subsections. The results of the experiments and sta
cal analyses are presented in Sec. 3. We discuss the
conclusions and related future work in Sec. 4.

2 Goals and Methods

2.1 Quality Attributes

Objective video quality model attributes were reported
Refs. 17 and 18. These attributes can be directly transl
to the still image quality measures as ‘‘IQM desiderata’’
multimedia and computer vision applications.

• Prediction accuracy: The accurate prediction of dist

Table 1 List of symbols and equation numbers of the quality met-
rics.

Symbol Description Equation

D1 Mean square error (A1)

D2 Mean absolute error (A2)

D3 Modified infinity norm (A3)

D4 L* a* b* perceptual error (A4)

D5 Neighborhood error (A5)

D6 Multiresolution error (A6)

C1 Normalized cross correlation (A7)

C2 Image fidelity (A8)

C3 Czekonowski correlation (A9)

C4 Mean angle similarity (A10)

C5 Mean angle-magnitude similarity (A11)

E1 Pratt edge measure (A12)

E2 Edge stability measure (A13)

S1 Spectral phase error (A14)

S2 Spectral phase-magnitude error (A15)

S3 Block spectral magnitude error (A16)

S4 Block spectral phase error (A17)

S5 Block spectral phase-magnitude error (A18)

Z1 Rate distortion measure (A19)

Z2 Hellinger distance (A20)

Z3 Generalized Matusita distance (A21)

Z4 Spearman rank correlation (A22)

H1 HVS absolute norm (A23)

H2 HVS L2 norm (A24)

H3 Browsing similarity (A25)

H4 DCTune
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 207
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tion, whether for algorithmic performance and subje
tive assessment. For example, when quality met
are shown in box plots, like in Fig. 1, an accura
metric will possess a small scatter plot.

• Prediction monotonicity: The objective image quali
measure’s scores should be monotonic in their re
tionship to the performance scores.

• Prediction consistency: This attribute relates to the
jective quality measure’s capability to provide cons
tently accurate predictions for all types of images a
not to fail badly for a subset of images.

These desired characteristics are captured in the sta
cal measures such as theF scores of the quality metrics, a
detailed in Tables 1–3.

2.2 Test Image Sets and Rates

All the image quality measures are calculated in th
multiband versions. In the current study of the quality me
sures in image compression, we used two well-known co
pression algorithms: the popular DCT based JPEG25 and
wavelet zero-tree method ‘‘set partitioning in hierarchic
trees’’ ~SPIHT! formulated by Said and Pearlman.26 The
other types of image distortions are generated by the us
blurring filters of various support sizes and by the addit
of white Gaussian noise at various levels.

The rate selection scheme was based on the acce
rate ranges of JPEG. It is known that the JPEG qua
factor Q between 80 and 100 corresponds to visually i
perceptible impairment,Q between 60 and 80 correspon
to perceptible but not annoying distortion, forQ between
40 and 60 the impairment becomes slightly annoying, foQ

Fig. 1 Box plots of quality measure scores: (a) good measure, (b)
moderately good measure, (c) poor measure.
208 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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between 20 and 40 the impairment is annoying, and, fina
for Q less than 20 the degradation is very annoying. Th
each image class was compressed with 5 JPEGQ factors of
90, 70, 50, 30, and 10. For each quality class the aver
length of compressed files was calculated and the co
sponding bit rate~bit/pixel! was accepted as the class’ rat
The same rate as that obtained from the JPEG experim
was also used in the SPIHT algorithm.

The test material consisted of the following image se
~1! 10 three-band remote sensing images, which contai
a fair amount of variety, i.e., edges, textures, platea
and contrast range,~2! 10 color face images from
the Purdue University Face Image database27 at
rvl1.ecn.purdue.edu/aleix/Aleix–face–DB.html, and~3! 10
texture images from the MIT Texture Database~VISTEX!
at www-white.media.edu/vismod/imagery/VisionTextur
vistex.html.

2.3 Analysis of Variance

Analysis of variance~ANOVA !28 was used as a statistica
tool to evaluate the merits of the quality measures. In ot
words, ANOVA was used to show whether variation in t
data could be accounted for by the hypothesized factor,
example, the factor of image compression type, the fac
of image class, etc. The output of the ANOVA is the ide
tification of those image quality measures that are m
consistent and discerning of the distortion artifacts due
compression, blur, and noise.

Recall that ANOVA is used to compare the means
more than two independent Gaussian distributed groups
our case each ‘‘compression group’’ consists of qua
scores from various images at a certain bit rate, and th
are k55 groups corresponding to the five bit rates test
Each group had 30 sample vectors since there were 30
tispectral test images~10 remote sensing, 10 faces, 10 te
tures!. In a similarly way three ‘‘blur groups’’ were create
by low-pass filtering the images with two-dimensional~2D!
Gaussian-shaped filters with increasing support. Fina
three ‘‘noise groups’’ were created by contaminating t
images with Gaussian noise with variance set at~s2

5200, 600, and 1700!. This range of noise values spans t
noisy image quality from just noticeable distortion to a
noying degradation. In a concomitant experiment57 images
were watermarked at four different insertion strengths.

Since we have two coders~i.e., JPEG and SPIHT algo
rithms! two-way ANOVA is appropriate. The hypothese
for the comparison of independent groups are

H0 : m15m25...5mk

mean values of all groups are equal,

HA : m i Þm j

mean values of two or more groups

are not equal.

It should be noted that the test statistic is anF test withk– l
andN–k degrees of freedom, whereN is the total number
of compressed images. A lowp-value ~high F value! for
this test indicates one should reject the null hypothesis
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Statistical evaluation of image quality
favor of the alternative. Recall that the null hypothesis c
responds to a situation in which all samples are drawn fr
the same set and there is no significant difference betw
their means. A low value ofp ~correspondingly, a high
value ofF! casts doubt on the null hypothesis and provid
strong evidence that at least one of the means is sig
cantly different. In other words, there is evidence that
least one pair of means is not equal. We have opted to c
out multiple comparison tests at the 0.05 significance le
Thus any test resulting of ap value under 0.05 would be
significant, and, therefore, one would reject the null h
pothesis in favor of the alternative hypothesis. This is do
to assert that the difference in quality metric arises fr
image coding artifacts and not from random fluctuations
the image content.

To find out whether the variation of the metric scor
arises predominantly from image quality, and not from t
image set, we considered the interaction between the im
set and distortion artifacts~i.e., compression bit rate, blu
etc.!. To this end we considered theF scores with respect to
the image set as well. As will be discussed in Sec. 3
shown in Tables 2 and 3, metrics that were sensitive
distortion artifacts were naturally sensitive to variations
the image set as well. However for the ‘‘good’’ measur
identified, the sensitivity to image set variation was alwa
less to the distortion sensitivity.

A graphical comparison based on box plots, where e
box is centered on the group median and sized to the u
and lower 50 percentiles, allows one to see the distribu
of the groups. If theF value is high, there will be little
overlap between two or more groups. If theF value is not
high, there will be a fair amount of overlap among all of t
groups. In the box plots, a steep slope and little over
between boxes, as illustrated in Fig. 1, are both indica
of a good quality measure. In order to quantify the d
criminative power of a quality measure, we have norm
ized the difference between two successive group mean
their respective variances, i.e.,

Qr ,r 115
m r2m r 11

As rs r 11

,

~1!
Q5ave$Qr ,r 11% r 51, . . .k21,

wherem r denotes the mean value of the image quality m
sure for the images compressed at rater and s r is the
standard deviation;k is the number of different bit rates a
which quality measures are calculated. A good image q
ity measure should have a highQ value, which implies
little overlap between groups and/or large jumps betw
them hence a highly discriminative power of the qual
measure. It should be noted that theQ values and theF
scores yielded identical results in our experiments.

In Fig. 1 we give box plot examples of a good, a mo
erate, and a poor measure. For the box plot visualization
data have been appropriately scaled without any loss
information.

2.4 Visualization of Quality Metrics

The visualization of the IQMs in a 2D display is potential
helpful to observe the clustering behavior of the qua
n
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metrics, and conversely to deduce how differently they
spond to distortion artifacts arising from compression, b
and noise. The output of self-organizing map~SOM! visu-
alization is a set of qualitative arguments showing th
similarity or dissimilarity. To see this we organized them
vectors and fed them to a SOM algorithm. The elements
the vectors are simply the measured quality scores.
example, consider the MSE error (D1) for a specific com-
pression algorithm~e.g., JPEG! at a specific rate. The cor
responding vectorD1 is M dimensional, whereM is the
number of images, and it reads

D1~JPEG,bitrate!

5@D1~1uJPEG,bitrate!, . . . ,D1~M !u JPEG,bitrate#T.

There will be five such vectors, one for each bit rate co
sidered. We used a total of 30 images35 bit rates
32 compressors326 metrics57800 vectors to train the
SOM.

Recall that the SOM is a tool for visualization of hig
dimensional data. It maps complex, nonlinear high dim
sional data into simple geometric relationships on a l
dimensional array and thus serves to produce abstracti
Among the important applications of the SOM one can c
the visualization of high dimensional data, as a case
point, and the discovery of categories and abstractions f
raw data.

Let the data vectors be denoted asX5@x1 , . . . ,xM#T

PRM, whereM is the number of images considered~M
530 in our case!. With each element in the SOM array,
parametric real vectormi5@m i1 , . . . ,m iM #TPRM that is
associated. The location of an input vectorX in the SOM
array is defined by the decoder functiond(X,mi), where
d(.,.) is ageneral measure of distance. The location of
input vector will have the array indexc defined asc
5argmin

i
d(X,mi). A critical part of the algorithm is defin-

ing mi in such a way that the mapping is ordered and
scriptive of the distribution ofX. Finding such a set of
values that minimizes the distance measure resembles
standard vector quantization~VQ! problem. In contrast, the
indexing of these values is arbitrary, whereby the mapp
is unordered. However, if minimization of the objectiv
functional based on the distance function is implemen
under the conditions described in Ref. 29, then one
obtain ordered values ofmi , almost as ifmi were lying at
the nodes of an elastic net. With the elastic net analogy
mind, the SOM algorithm can be constructed as

mi~ t11!5mi~ t !1a~ t !@X~ t !2mi~ t !#,

wherea(t) is a small scalar, if the distance between unitc
and i in the array is smaller than or equal to a specifi
limit ~radius!, anda(t)50 otherwise. During the course o
the ordering process,a(t) is decreased from 0.05 to 0.02
while the radius of the neighborhood is decreased from
to 3. Furthermore scores are normalized with respect to
range.
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 209
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Table 2 ANOVA results (F scores) for the JPEG and SPIHT compression distortions as well as for
additive noise and blur artifacts. For each distortion type the variation due to the image set is also
established. For compression the degrees of freedom are 4 (bit rate) and 2 (image class) while they
are 2 for both the blur and noise experiments.

ANOVA2

JPEG SPIHT Blur Noise

Bit rate Image set Bit rate Image set Blur Image set Noise Image set

D1 104.6 42.59 39.23 13.28 43.69 2.06 9880 17.32

D2 108.5 67.45 29.56 15.93 33.94 17.76 6239 20.4

D3 63.35 29.37 53.31 48.53 38.55 24.13 1625 11.15

D4 89.93 1.99 13.75 3.71 27.87 0.96 166.4 9.88

D5 20.26 80.71 14.09 68.22 6.32 55.11 1981 43.51

D6 76.73 5.94 37.52 11.22 412.9 45.53 44.61 4.38

C1 1.35 124.6 12.05 325.5 5.61 107.2 3.82 6.17

C2 12.26 93.83 15.18 82.87 11.19 39.77 58.04 45.63

C3 82.87 83.06 24.96 22.42 30.92 1.71 567.5 52.01

C4 45.65 47.36 7.91 5.94 16.48 0.77 198.8 19.03

C5 91.42 38.17 27.51 5.28 52.57 2.44 704 10.8

E1 26.24 3.64 77.86 137 125.8 21.09 87.76 27.87

E2 176.3 92.75 212.5 200.4 768.7 23.41 158.5 24.84

S1 150.5 102.2 104 68.17 1128 60.04 47.29 38.42

S2 191.3 98.42 161 101.8 572.2 17.95 107.1 4.83

S3 145.6 56.39 38.58 26.97 24.28 6.39 2803 8.59

S4 129.1 63.26 128 46.85 215 11.17 56.04 55.1

S5 146.1 71.03 144.1 61.65 333.6 27.84 78.04 26.53

Z1 1.69 141.8 21.36 14 35.9 62.5 44.89 110.9

Z2 7.73 114.7 11.41 77.68 10.17 1.80 3.03 11.36

Z3 17.63 223 23.22 181.4 17.26 8.31 14.71 21.12

Z4 9.4 23.58 9.84 32.41 8.45 14.74 24.99 3.31

H1 371.9 0.09 107.2 40.05 525.6 69.98 230.7 19.57

H2 2291 5.46 132.9 22.82 47.28 101.7 624.3 21.32

H3 123 1.2 27.45 7.6 67.31 6.77 117.3 0.50

H4 78.83 7.14 25.2 95.72 12.55 2.11 29.06 6.69
f
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The component planesj of the SOM, i.e., the array o
scalar valuesm i j representing thej th components of the
weight vectorsmi and having the same format as the SO
array, are displayed as shades of gray.

3 Statistical Analysis of Image Quality Measures

Our first goal is to investigate the sensitivity of quali
measures to distortions that arise from image compres
schemes, in other words, to find the degree to whic
quality measure can discriminate the coding artifacts
translate it into a meaningful score. We similarly establ
the response sensitivity of the measures to other cause
distortion such as blur and noise. Our second goal is
establish how various quality measures are related to e
other and to show the degree to which measures resp
~dis!similarly to coding and sensor artifacts. As the ou
come of these investigations we intend to extract a su
of measures that satisfies the image quality measure d
erata.
ctronic Imaging / April 2002 / Vol. 11(2)
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3.1 ANOVA Results

The two-way ANOVA results of the image quality mea
sures of the data obtained from all image classes~fabrics,
faces, remotes! are listed in Table 2. In Table 2 the symbo
of quality measuresD1, D2, . . . ,H3, H4 are listed in the
first column while theF scores of JPEG compression,
SPIHT compression, of blur and of noise distortions a
given, respectively, in the remaining four columns.

The metric that responds most strongly to one distort
type is called the ‘‘fundamental metric’’ of that distortio
type.24 Note that there could be more than one fundamen
metric. Similarly, the metric that responds adequately to
sorts of distortion effects is denoted as the ‘‘global metric
One notices the following.

• The fundamental metrics for JPEG compression
H2, H1, S2, andE2, which is the human visual sys
tem ~HVS! L2 norm, the HVS absolute norm, th



i-
to

5, D3

2, D3

3, C5

3, D5

Statistical evaluation of image quality
Table 3 Classification of metrics according to their sensitivity for different types of distortion on ind
vidual and combined image sets. The bottom two rows indicate the metrics that are least sensitive
the image set and to the coder type.

One-way
ANOVA

Image set JPEG SPIHT Blur Noise

Fabrics H4, H2, E2, S4 E1, S1, E2, S2 S1, S5, E2, S4 D1, D2, D

Faces H2, D1, S3, H1 H4, D3, H2, C1 S2, H1, S1, E2 D1, S3, D

Remote sensing H2, H4, S4, S5 S2, S5, S4, S1 D6, S5, S4, S1 D1, D2, C

Two-way
ANOVA

Combined set H2, H1, S2, E2 E2, S2, S5, H2 S1, E2, S2, H1 D1, D2, S

Image set independence H1, H3 D4, C5 C4, D4 H3, Z4

Coder type independence D2, D1, Z4, D3
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spectral phase magnitude, and edge stability measu
These measures are listed in decreasing order of thF
score.

• The fundamental metrics for SPIHT compression
E2, S2, S5, and H2, that is, edge stability, spectra
phase magnitude, block spectral phase magnitude,
the HVSL2 norm.

• The fundamental metrics for the blur effect areS1,
E2, S2, andH1, that is, spectral phase, edge stabili
spectral phase magnitude, and the HVS abso
norm. Notice the similarity of the metrics betwee
SPIHT and blur. This is due to the fact that we prim
rily encounter blur artifacts in wavelet-based compr
sion.

• The fundamental metric for the noise effect is, as e
pected,D1, the mean square error.

• Finally the image quality metrics that are sensitive
all distortion artifacts are, in rank of order,E2, H1,
S2, H2, andS5, that is, edge stability, the HVS abso
lute norm, spectral phase magnitude, the HVSL2
norm, and block spectral phase magnitude. To es
lish the global metrics, we gave rank numbers from
to 26 to each metric under the four types of distorti
in Table 2. For example, for JPEG the metrics a
ordered asH2, H1, S2, E2, etc., if we take into con-
sideration theirF scores. Then we summed their ran
numbers, and the metrics for which the sum of t
scores were the smallest were declared the global m
ric, that is, the ones that qualify well in all discrim
nation tests. These results must still be taken w
some caution since, for example, none of the five w
ning scores is as sensitive to additive noise as theD1
andD2 scores.

• The metrics that were the least sensitive to image
variation areD4, H3, C4, C5, D6, etc. It can be ob-
served that these metrics in general also show p
performance in discriminating distortion effects. O
the other hand, for the distortion sensitive metri
even though their image set dependence is higher
the so-called ‘‘image independent’’ metrics, more
the score variability is due to distortion than to ima
set changes. This can be observed based on the h
F scores for distortion effects compared to image
relatedF scores.
s.

d
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t-
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n
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These observations are summarized in Table 3 where
way results are given for each image class~fabrics, faces,
remote sensing! separately, and two-way ANOVA result
are presented for the combined set. In the two bottomm

Table 4 ANOVA results for the effect of bit rate (pooled data from
JPEG and SPIHT) and of coder type. The degrees of freedom are 4
(bit rate) and 1 (coder type).

ANOVA2 JPEG1SPIHT

Metric Bit rate Coder

D1 89.79 0.75

D2 74.98 2.72

D3 71.55 1.21

D4 70.52 43.85

D5 17.07 0.0005

D6 85.22 118.8

C1 2.66 45.47

C2 12.28 18.27

C3 56.48 1.56

C4 31.3 2.43

C5 78.98 2.23

E1 42.69 11.61

E2 122.4 26.28

S1 99.12 5.29

S2 140.1 12.37

S3 92.99 9.27

S4 115.5 39.1

S5 124.8 43.09

Z1 4.28 41.6

Z2 9.54 0.83

Z3 12.87 0.56

Z4 9.39 6.64

H1 278.6 52.87

H2 493 87.21

H3 97.94 16.19

H4 21.13 57.72
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 211
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Avcıbaş, Sankur, and Sayood
rows of Table 3 the metrics that are least sensitive to
coder type and to the image set are given. The criteria
omitting and entering the metrics in Table 3 were the o
come of theF scores.

We also investigated the metrics with respect to th
capability to respond to bit rate and coder type. For t
analysis the scores of the JPEG and SPIHT compres
were combined. The following can be observed in Table

• The metrics that were best in discriminating compr
sion distortion as parameterized by the bit rate, wh
ever the coder type, that is JPEG or SPIHT, wereH2,
H1, S2, andS5 ~the HVSL2 norm, the HVS absolute
norm, spectral phase magnitude, block spectral ph
magnitude, etc.

• The metrics that were capable of discriminating t
coder type~JPEG versus SPIHT! were similar in the
sense that they all belong to the human vision sys
inspired types, namely,D6, H2, H4, andH1 ~multi-
resolution error, the HVSL2 norm, DCTune, and the
HVS L1 norm!.

• Finally, the metrics that were most sensitive to dist
tion artifacts, but at the same time least sensitive
image set variation, wereC5, D1, D3, S3, D2, C4,
etc. ~mean angle-magnitude similarity, mean squa
error, modified infinity norm, block spectral magn
tude error, mean absolute error, mean angle simila
etc.!. These metrics were identified by summing t
two rank scores of the metrics, the first being the ran
in ascending order of distortion sensitivity, the seco
in descending order of the image set sensitivity. Int
estingly enough almost all of them are related to
variety of mean square error. Despite its many cr
cisms, this may explain why mean square error
signal-to-noise ratio measures have proven to be
resilient over time. Again this conclusion should b
accepted with some caution. For example, comm
experience indicates that MSE measures do not ne
sarily reflect all the objectionable coding artifacts e
pecially at low bit rates.

As expected the metrics that are responsive to dis
tions are also almost always responsive to the image
Conversely, the metrics that do not respond to variation
the image set are also not very discriminating with resp
to distortion types. The fact that the metrics are sensitive
would be expected, to both the image content and distor
artifacts does not eclipse their potential as quality metr
Indeed, when the metrics were tested in more homogene
image sets~that is, only within face images or remote sen
ing images, etc.! the same high-performance metrics scor
consistently higher. Furthermore, when one compares thF
scores of the metrics with respect to bit rate variation a
image set variation, even though there is a non-neglig
interaction factor, theF score due to bit rate is alway
larger than theF score due to image sets.

3.2 Self-Organizing Map of Quality Measures

Our second investigation was of the mutual relations
between measures. It is obvious that the quality meas
must be correlated with each other since most of them m
212 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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respond to compression artifacts in similar ways. On
other hand, one can conjecture that some measures mu
more sensitive to blurring effects, while others respond
blocking effects, while still others reflect additive noise.

The SOM29 is a pictorial method by which to displa
similarities and differences between statistical variabl
such as quality measures. We have therefore obtained
tial organization of these measures via Kohonen’s s
organizing map algorithm. The input to the SOM algorith
was vectors whose elements are the scores of the mea
resulting from different images. More explicitly, consid
one of the measures, let us say,D1, and a certain compres
sion algorithm, e.g., JPEG. The instances of this vector w
be 60 dimensional, one for each of the images in the
The first 30 components consist of 30 images compres
with JPEG, the next 30 juxtaposed components of the sa
images compressed with SPIHT. Furthermore there will
five such vectors, one for each of the bit rates.

The SOM organization of the measures in 2D space
pooled data from JPEG and SPIHT coders is shown in F
2. These maps are useful for visual assessment of any
sible correlation present in the measures. One would ex
that measures with similar trends and which respond
similar ways to artifacts would cluster together spatial
The main conclusions from observation of the SOM a
the correlation matrix are the following.

• The clustering tendency of pixel difference bas
measures (D1,D2,D4,D5) and the spectral magnitud
based method (S3) is obvious in the center portion o
the map, a reflection of the Parseval relationsh
However notice that spectral phase-magnitude m
sures (S2,S5) stay distinctly apart from these mea
sures. In a similar vein purely spectral phase measu
also form a separate cluster.

• The human visual system based measu
(H2,H3,H4), multiresolution pixel-difference mea

Fig. 2 SOM map of distortion measures for JPEG and SPIHT.
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Statistical evaluation of image quality
sure (D6), E2 ~edge stability measure!, and C5
~mean angle-magnitude measure! are clustered on the
right side of the map. The correlation of the multires
lution distance measure,D6, with HVS based mea
sures (H2,H3,H4) is not surprising since the idea b
hind this measure is to mimic an image comparison
eye more closely by assigning a larger weight to lo
resolution components and a lesser weight to the
tailed high frequency components.

• The three correlation based measures (C1,C2,C3) are
together in the lower part of the map while the tw
spectral phase error measures (S2,S5) are concen-
trated separately in the upper part of the map.

• It is interesting to note that all the context-based m
sures (Z1,Z2,Z3,Z4) are grouped in the upper left re
gion of the map together withH1 ~the HVS filtered
absolute error!.

• The proximity of the Pratt measure (E1) and the
maximum difference measures (D3) is meaningful,
since the maximum distortions in reconstructed i
ages are near the edges. The constrained maxim
distance or sorted maximum distance measures ca
used in codec designs to preserve the two-dimensio
features, such as edges, in reconstructed images.

In conclusion the relative positioning of measures in
two-dimensional map was in agreement with one’s intuit
grouping and with the ANOVA results. We would like t
emphasize here that in the above SOM discussions
only the relative position of the measures that is significa
while their absolute positioning is arbitrary. Furthermo
the metrics that behave in an uncorrelated way in the S
display are conjectured to respond to different distort
artifacts and are used as an additional criterion for the
lection of ‘‘good’’ measure subsets.

3.3 Combination of Quality Measures: Supermetrics

It was conjectured that a judicious combination of ima
quality metrics could be more useful in image process
tasks. We present two instances of the application of
IQM combination, namely, in steganalysis and in predict
subjective quality measures.

Steganography refers to the art of secret communica
while steganalysis is the ensemble of techniques that
detect the presence of watermarks and differentiate
godocuments. For this digital watermarking is used, wh
consists of an imperceptible and cryptographically sec
message added to the digital content, to be extracted
by the recipient. However, if digital watermarks are to
used in steganography applications, detection of their p
ence by an unauthorized agent defeats their very purp
Even in applications that do not require hidden commu
cation, but only watermarking robustness, we note tha
would be desirable to first detect the possible presence
watermark before trying to remove or manipulate it.

The underlying idea of watermarking is to create a n
document, e.g., an image, which isperceptually identical
but statistically differentfrom the host signal. Watermar
decoding uses this statistical difference in order to extr
the stegomessage. However, the very same statistical d
ence that is created could potentially be exploited to de
-
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mine if a given image is watermarked or not. The answe
this conjecture is positive in that we show that waterma
ing leaves unique artifacts, which can be detected us
image quality measures~IQMs!.57,58

In order to identify specific quality measures that pro
useful in steganalysis, that is, distinguishing the wat
marked images from the nonwatermarked ones, we ag
use the ANOVA test. Twenty-six quality measures are s
jected to a statistical test to determine if the fluctuations
the measures result from image variety or whether th
arise due to treatment effects, that is, watermarking
stego-message embedding. Thus any test resulting inp
value under 0.05 would be significant, and, therefore, o
would accept the assertion that the difference in qua
metric arises from the ‘‘strength’’ parameter of the wate
marking or steganography artifacts, and not from variatio
in the image content. The idea of employing more than o
IQM in the steganalyzer is justified since different wate
marking algorithms mark different features of the imag
such as global discrete Fourier transform~DFT! coeffi-
cients, block discrete cosine transform~DCT! coefficients,
pixels directly, etc.

We performed ANOVA tests for several watermarkin
and steganography algorithms. For example, the most
criminating IQMs for the pooled steganography and wat
marking algorithms were found to be the mean absol
errorD2 , mean square errorD1 , Czekonowsky correlation
measureC3 , angle meanC4 , spectral magnitude distanc
S2 , median block spectral phase distanceS4 , median block
weighted spectral distanceS5 , and normalized mean squar
HVS error H2 . The implication here is twofold: One is
that, by using these features, a steganalyzer can be des
to detect the watermarked or stegoed images using m
variate regression analysis, as we showed in Refs. 57–
This linear combination of IQMs for steganalysis purpos
is denoted as the ‘‘supermetric’’ for steganalysis. It w
shown in Ref. 57 that the steganalysis supermetric can
tect the presence of watermarking with 85% accuracy
can even predict whose watermark it is.58 The other impli-
cation is that current watermarking or steganographic al
rithms should exercise more care in those statistically s

Fig. 3 Plot of the mean opinion score and image quality supermetric
data.
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 213
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214 / Journal of Ele
Table 5 Image quality metrics and their correlation coefficients with MOS data.

D1 0.893 C1 0.501 E2 0.890 Z1 0.502 H3 0.936

D2 0.895 C2 0.810 S1 0.929 Z2 0.543 H4 0.982

D3 0.720 C3 0.926 S2 0.903 Z3 0.609 Supermetric 0.987

D4 0.901 C4 0.912 S3 0.930 Z4 0.517

D5 0.381 C5 0.917 S4 0.883 H1 0.890

D6 0.904 E1 0.833 S5 0.865 H2 0.938
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nificant image features to eschew detection.59

For the second supermetric we searched for a correla
between the subjective opinions and an objective mea
derived from a combination of our IQMs. The subjecti
image quality experiment was conducted with a group
17 subjects~students that first took a course in image p
cessing! who noted their image quality opinion scores
the 1–5 range, 1 being no distortion could be observed
5 meaning very annoying quality. The time of observati
was unlimited. The images used were all 5123512 red–
green–blue~RGB! color images from the Purdue Unive
sity face database, and were viewed at 43 the image
height. The results reported are based on 850 quality ev
ations of 50 encoded images~10 images compressed wit
JPEG at five different quality scales,Q510, 30, 50, 70, and
90! by the pool of 17 subjects. The supermetric of ima
quality for compression artifacts was built using glob
metricsE2, H1, S2, H2, andS5, that is, the edge stability
HVS absolute norm, spectral phase magnitude, HVSL2
norm, and block spectral phase magnitude! for the image
distortions due to compression. The supermetric was b
by regressing them against the mean opinion scores~MOS!.
The plot of this supermetric and MOS data are given in F
3, where a high value of the correlation coefficient w
determined: 0.987. The correlation coefficients of the in
vidual metrics, shown in Table 5, were all lower, as e
pected.

4 Conclusions

In this work we have presented collectively a compreh
sive set of image quality measures and categorized th
Using statistical tools we were able to classify more th
two dozen measures based on their sensitivity to differ
types of distortions.

Statistical investigation of 26 different measures us
ANOVA analyses has revealed that local phase-magnit
measures~S2 or S5!, HVS-filteredL1 andL2 norms~H1
and H2!, and the edge stability measure (E2) are most
sensitive to coding and blur artifacts, while the mean squ
error (D1) remains the best measure for additive noi
These ‘‘winning’’ metrics were selected on the basis of t
sum of the rank scores over four artifacts: JPE
compression/SPIH-compression, blur, and noise. This
selection of theE2, S2, S5, H1, andH2 subset was based
on the one hand, on their superiorF scores and, on the
other hand, on the fact they appeared to behave in an
correlated way in their SOM maps.

These metrics satisfied, in their category of distortio
the IQM desiderata given in Sec. 2.1, namely, accura
monotonicity, and consistency. TheH1, H2, S2, S5, and
ctronic Imaging / April 2002 / Vol. 11(2)
n
e

d

-

t

.

t

e

e
.

-

-

,

D1 metrics were accurate in that they responded predo
nantly to the type of distortion stated than to any oth
factor. They responded monotonically to the level of dist
tion, that is, the metric versus distortion parameter plot
monotonically~graph not shown!. Finally their consistency
was shown when they were tested on widely differing i
age classes~faces, textures, remote sensing!.

Ideally speaking, one would like to have a quality me
sure that is able to give accurate results for different lev
of performance of a given compression scheme, and ac
different compression schemes. It appears that, as show
Sec. 3.3, a combination of spectral phase-and-magnit
measures and of the HVS-filtered error norm comes clo
to satisfying such a measure, because it is sufficiently s
sitive to a variety of artifacts. The Kohonen map of th
measures has been useful in depicting measures that be
similarly or in an uncorrelated way. The correlation b
tween various measures as are depicted in Kohonen’s
organizing map.

In conclusion, the subsets of theE2, S2, S5, H1, and
H2 metrics are the prominent image quality measures
shown from both ANOVA analysis and MOS scores poin
of view. The implication is that more attention should b
paid to the spectral phase and HVS-filtered quality metr
in the design of coding algorithms and sensor evaluati
We have also shown the validity of the ANOVA methodo
ogy in an alternate application, that is, when we applied
to the selection of IQMs for the construction of a stegan
lyzer.

In future work we will address extension of the subje
tive experiments. Note that we have only shown in o
experiment that the IQMs selected regress well in the m
opinion scores. However this experiment must be repea
on yet unseen data to understand how well it predict
subjective opinion. In a similar vein the database for det
tion experiments will be extended to cover a larger vari
of watermarking and steganography tools.
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Appendix

Here in the Appendix we define and describe the multitu
of image quality measures considered. In these definiti
the pixel lattices of imagesA andB will be referred to as
A( i , j ) and B( i , j ), i, j 51, . . . ,N, since the lattices are
assumed to have dimensions ofN3N. The pixels can take
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Statistical evaluation of image quality
values from the set$0, . . . ,G% in any spectral band. The
actual color images we considered had G5255 in each
band. Similarly we will denote the multispectral comp
nents of an image at pixel positionsi andj, and in bandk as
Ck( i , j ), wherek51, . . . ,K. The boldface symbolsC( i , j )

and Ĉ( i , j ) will indicate the multispectral pixel vectors a
position~i,j!. For example, for the color images in the RG
representation one hasC( i , j )5@R(i , j ) G(i , j ) B( i , j )#T.
All these definitions are summarized in the following:

Ck( i , j ) ( i , j )th pixel of thekth band of im-
ageC
C( i , j ) ( i , j !th multispectral~with K bands!
pixel vector
C multispectral image
Ck kth band of a multispectral imageC

«k5Ck2Ĉk error over all the pixels in the
kth band of a multispectral imageC

Thus, for example, the power in thekth band can be
calculated assk

25( i , j 50
N21 Ck( i , j )

2. All the quantities with a

caret, i.e.,Ĉk( i , j ), Ĉ, etc., will correspond to distorted
versions of the same original image. As a case in point,
expression iC( i , j )2Ĉ( i , j )i25(k51

K @Ck( i , j )2Ĉk( i , j )#2

will denote the sum of errors in the spectral component
given pixel positionsi,j . In a similar way the error in the
last row of the above minitable expands as«k

2

5( i 51
N ( j 51

N @Ck( i , j )2Ĉk( i , j )#2. In the specific case o
RGB color images we will occasionally revert back to n
tations$R, G, B% and$R̂,Ĝ,B̂%.

A Measures Based on Pixel Differences

The measures here calculate the distortion between two
ages on the basis of their pixelwise differences or cer
moments of the difference~error! image.

A.1.1 Minkowsky metrics

The Lg norm of the dissimilarity of two images can b
calculated by taking the Minkowsky average of pixel d
ferences spatially and then chromatically~that is, over the
bands!:

«g5
1

K (
k51

K H 1

N2 (
i , j 50

N21

uCk~ i , j !2Ĉk~ i , j !ugJ 1/g

. ~A1!

Or, the Minkowsky average can first be carried over
bands and then spatially, as in the following expression

«g5
1

N2 H (
i , j 50

N21 F 1

K (
k51

K

uCk~ i , j !2Ĉk~ i , j !uGgJ 1/g

.

In what follows we have used the pixelwise difference
the Minkowsky sum given in Eq.~A1!. For g52, one ob-
tains the well-known mean square error expression,
noted asD1:

D15
1

K

1

N2 (
i , j 50

N21

iC~ i , j !2Ĉ~ i , j !i25
1

K (
k51

K

«k
2. ~A2!
t

-

-

An overwhelming number of quality results in the literatu
is in fact given in terms of the SNR or the peak SN
~PSNR!, which are obtained, respectively, by dividing th
image power byD1 and by dividing the peak powerG2 by
D1. Although the SNR and the PSNR are very frequen
used in quantifying coding distortions, their shortcomin
have been pointed out in various studies.13 However, de-
spite these oft cited criticisms of MSE-based quality me
sures there has been a recent resurgence of SNR/P
metrics.17,18 For example, studies of the video quality e
pert Group~VQEG!17 have shown that the PSNR measu
is a very good indicator of subjective preference in vid
coding.

For g51 one obtains the absolute difference, denoted
D2. For g5` power in the Minkowski average the max
mum difference measure,

«`5max
i , j

(
k51

K
1

K
uCk~ i , j !2Ĉ~ i , j !u5max

i , j
iC~ i , j !2Ĉ~ i , j !i ,

is obtained. Recall that in signal and image processing
maximum difference or the infinity norm is very common
used.6 However given the noise-prone nature of the ma
mum difference, this metric can be made more robust
considering the ranked list of pixel differencesD l(C2Ĉ),
l 51, . . .N2, resulting in a modified Minkowski infinity

metric, calledD3. HereD l(C2Ĉ) denotes thel th largest

deviation among all pixels.31 ThusD l(C2Ĉ) is simply the
error expression«` above. Similarly,D2 corresponds to the
second largest term, etc. Finally a modified maximum d
ference measure using the firstr of Dm terms can be con-
structed by computing the root mean square value of
ranked largest differences,D l , . . . ,D r .

D35A1

r (
m51

r

Dm
2 ~CÀĈ!. ~A3!

A.1.2 MSE in L*a*b* space

The choice of color space for measuring image similarity
important, because the color space must be uniform, so
intensity difference between the two colors must be con
tent with the color difference estimated by a human o
server. Since the RGB color space is not well suited to t
task two color spaces are defined: 1976 CIEL* u* v* and
1976 CIE L* a* b* color spaces.32 One recommended
color-difference equation for the Lab color space is giv
by the Euclidean distance.33 Let

DL* ~ i , j !5L* ~ i , j !2L̂* ~ i , j !,

Da* ~ i , j !5a* ~ i , j !2â* ~ i , j !,

Db* ~ i , j !5b* ~ i , j !2b̂* ~ i , j !,

denote the color component differences inL* a* b* space.
Then the Euclidean distance is
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 215
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D45
1

N2 (
i , j 50

N21

@DL* ~ i , j !21Da* ~ i , j !21Db* ~ i , j !2#.

~A4!

Note that Eq.~A4! is intended to yield a perceptually un
form spacing of colors that exhibit color differences grea
than the just-noticeable difference~JND! threshold but
smaller than those in the Munsell book of color.33 This
measure applies obviously to color images only and can
be generalized to arbitrary multispectral images. Theref
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it has been used only for the face images and texture
ages, not the satellite images.

A.1.3 Difference over a neighborhood

Image distortion on a pixel level can arise from differenc
in the gray level of the pixels and/or from displacements
the pixel. A distortion measure that penalizes in a gradua
way spatial displacements in addition to gray level diffe
ences, and that allows therefore some tolerance for p
shifts can be defined as follows:34,35
D55A 1

2~N2w!2 (
i , j 5w/2

N2w/2

S min
l ,mPwi , j

$d@C~ i , j !,Ĉ~ l ,m!#% D 21 S min
l ,mPwi , j

$d@Ĉ~ i , j !,C~ l ,m!#% D 2, ~A5!
m-

f

ver

l

fi-
e

ed
as

on.
ra-
whered(•,•) is some appropriate distance metric. Noti
that for w51 this metric reduces to the mean square er
like in D1.

Thus for any given pixelC( i , j ), we search for the bes
matching pixel in thed distance sense in thewxwneighbor-
hood of pixelĈ( i , j ), denoted asĈw( i , j ). The size of the
neighborhood is typically small, e.g., 333 or 535, and
one can consider a square or a cross-shaped support.
larly, one calculates the distance fromĈ( i , j ) to Cw( i , j )
where againCw( i , j ) denotes the pixels in thewxw neigh-
borhood of coordinates~i,j! of C( i , j ). Note that in genera

d@C( i , j ),Ĉw( i , j )# is not equal tod@Ĉ( i , j ),Cw( i , j )#. As
for the distance measured(•,•), a city metric or a chess
board metric can be used. For example, a city block me
becomes

dcity@C~ i , j !,Ĉ~ l ,m!#5
~ u i 21u1u j 2mu!

N

1
iC~ i , j !2Ĉ~ l ,m!i

G
,

where i•i denotes the norm of the difference betwe

C( i , j ) andĈ( i , j ) vectors. Thus both the pixel color differ
ence and search displacement are considered. In this
pressionN and G are one possible set of normalizatio
factors with which to tune deviations due to pixel shifts a
pixel spectral differences, respectively. In our measu
ments we have used the city block distance with a 333
neighborhood size.

A.1.4 Multiresolution distance measure

One limitation of standard objective measures of dista
between images is that the comparison is conducted at
image resolution. Alternative measures can be defined
resemble image perception in the human visual sys
more closely by assigning larger weights to low resolutio
and smaller weights to the detail image.36 Such measures
are also more realistic for machine vision tasks that of
use local information only.
i-

x-

-

ll
t

Consider the various levels of resolution denoted byr
>1. For each value ofr the image is split into blocksb1 to
bn wheren depends on scaler. For example, forr 51, at
the lowest resolution, only one block covers the whole i
age characterized by its average gray levelg. For r 52 one
has four blocks eachN/23N/2 with average gray levels o
g11, g12, g21, and g22. For the r th resolution level one
would then have 22r 22 blocks of sizeN/2r 213N/2r 21,
characterized by the block average gray levelsgi j , i, j
51, . . . ,22r 22. Thus for each blockbi j of imageC, take
gi j as its average gray level andĝi j to correspond to its

component in imageĈ ~for simplicity a third index that
denotes the resolution level was omitted!. The average dif-
ference in gray level at resolutionr has weight of 1/2r .
Therefore the distortion at this level is

dr5
1

2r

1

22r 22 (
i , j 51

2r 21

ugi j 2ĝi j u,

where 2r 21 is the number of blocks along either thei andj
indices. If one considers a total ofR resolution levels, then
a distance function can be found simply by summing o
all the resolution levels,r 51, . . . ,R, that is, D(C,Ĉ)
5( r 51

R dr . The actual value ofR ~the number of resolution
levels! will be set by the initial resolution of the digita
image. For example, for a 5123512 image one hasR59.
Finally, for multispectral images one can extend this de
nition in two ways. In a straightforward extension, on
sums the multiresolution distancesdr

k over the bands,

D65
1

K (
k51

K

(
r 51

R

dr
k , ~A6!

where dr
k is the multiresolution distance in thekth band.

This is the multiresolution distance definition that we us
in the experiments. As an alternative, a Burt pyramid w
constructed to obtain a multiresolution representati
However in the tests it did not perform as well as the py
mid described in Ref. 36.
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Statistical evaluation of image quality
A different way in which to define the multiresolutio
distance would be to consider the vector difference of p
els:

D~C,Ĉ!5(
r 51

R

dr8 , with

dr5
1

2r

1

22r 22 (
i , j 51

2r 21

@~gi j
R2ĝi j

R!21~gi j
G2ĝi j

G!2

1~gi j
B2ĝi j

B !2#1/2,

where, for example,gi j
R is the average gray level of th

i , j th block in the ‘‘red’’ component of the image at~im-
plicit! resolution levelr. Notice that in the latter equatio
the Euclidean norm of the differences of the block avera
color components R, G, and B have been utilized.

Notice also that the last two measures, that is, the ne
borhood distance measure and the multiresolution dista
measure, have not been previously used in evaluating c
pressed images.

B Correlation-Based Measures

B.1 Image Correlation Measures

The similarity between two digital images can also
quantified in terms of the correlation function.5 These mea-
sures measure the similarity between two images, henc
this sense they are complementary to the difference-ba
measures: Some correlation based measures are the fo
ing.

Structural content:

C15
1

K
(
k51

K
( i , j 50

N21 Ck~ i , j !2

( i , j 50
N21 Ĉk~ i , j !2

. ~A7!

normalized cross-correlation measure:

C25
1

K (
k51

K
( i , j 50

N21 Ck~ i , j !Ĉk~ i , j !

( i , j 50
N21 Ck~ i , j !2 . ~A8!

Czenakowski distance: A metric that is useful for co
paring vectors with strictly non-negative components, l
in the case of color images, is given by the Czenakow
distance:37

C35
1

N2 (
i , j 50

N21 S 12
2(k51

K min@Ck~ i , j !,Ĉk~ i , j !#

(k51
K @Ck~ i , j !1Ĉk~ i , j !#

D . ~A9!

The Czenakowski coefficient38 ~also called the percentag
of similarity! measures the similarity among differe
samples, communities, and quadrates.

Obviously as the difference between two images te
towards zero«5C2Ĉ→0, all the correlation-based mea
sures tend towards 1, while as«2→G2 they tend towards 0
Recall also that distance measures and correlation mea
-
e
-

in
d

w-

i

es

are complementary, so that under certain conditions, m
mizing distance measures is tantamount to maximizing
correlation measure.39

B.1.2 Moments of the angles

A variant of correlation-based measures can be obtaine
considering the statistics of the angles between the p
vectors of the original and coded images. Similar ‘‘color
will result in vectors pointing in the same direction, whi
significantly different colors will point in different direc
tions inC space. Since we deal with positive vectorsC, Ĉ,
we are constrained to one quadrant of Cartesian sp
Thus the normalization factor of 2/p is related to the fact
that the maximum difference attained will bep/2. The
combined angular correlation and magnitude differen
between two vectors can be defined as37,40

x i j 512F12
2

p
cos21

^C~ i , j !,Ĉ~ i , j !&

iC~ i , j !iiĈ~ i , j !i
G

3F12
iC~ i , j !2Ĉ~ i , j !i

A332552 G .

We can use the moments of the spectral~chromatic! vector
differences as distortion measures. To this end we h
used the mean of the angle difference (C4) and the mean
of the combined angle-magnitude difference (C5) in the
following two measures:

C45mx512
1

N2 (
i , j 51

N X2

p
cos21 ^C~ i , j !,Ĉ~ i , j !&

iC~ i , j !iiĈ~ i , j !i
C,

~A10!

C55
1

N2 (
i , j 51

N

x i j , ~A11!

where mx is the mean of the angular differences. The
moments have previously been used to assess the d
tional correlation among color vectors.

C Edge Quality Measures

According to the contour-texture paradigm of images,
edges form the most informative part of the image. F
example, in the perception of scene content by the hum
visual system, edges play a major role. In a similar w
machine vision algorithms often rely on feature maps o
tained from the edges. Thus, task performance in visi
whether by humans or machines, is highly dependent on
quality of the edges and other two-dimensional featu
such as corners.9,41,42 Some examples of edge degradati
are discontinuities at the edge, a decrease in edge sharp
by smoothing effects, offset of the edge position, miss
edge points, falsely detected edge points, etc.39 Notice,
however, that all the above degradations are not necess
observed since edge and corner information in image
rather well preserved by most compression algorithms.

Since we do not possess the ground-truth edge map
have used the edge map obtained from the original unc
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 217
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Avcıbaş, Sankur, and Sayood
pressed images as a reference. Thus to obtain edge-b
quality measures we have generated edge fields from
the original and compressed images using a Ca
detector.43 We have not used any multiband edge detec
instead a separate edge map from each band has bee
tained. The outputs of the derivative of the Gaussians
each band are averaged, and the resulting average outp
interpolated, thresholded, and thinned in a manner sim
to that in Ref. 12. The parameters are set like those in R
43 at robotics.eecs.berkeley.edu/;sastry/ee20/cacode.htm

In summary, for each bandk51, . . .K, horizontal and
vertical gradients and their norms,Gx

k , Gy
k and Nk

5AGx
k2

1Gy
k2

are found. Their average over bands is c
culated and thresholded withT5a(Tmax2Tmin)1Tmin ,
where Tmax51/K(

k
max(Nk) and Tmin51/K(

k
min(Nk), a

50.1. Finally they are thinned by interpolation to find th
pixels in which the norms of gradient constitute the loc
maxima.

C.1 Pratt Measure

A measure introduced by Pratt39 considered both the accu
racy of the edge location and missing/false alarm edge
ements. This measure is based on knowledge of an i
reference edge map, in which the reference edges sh
preferably have a width of one pixel. The figure of merit
defined as

E15
1

max$nd ,nt%
(
i 51

nd 1

11adi
2 , ~A12!

wherend and nt are the number of detected and groun
truth edge points, respectively, anddi is the distance to the
closest edge possible for thei th edge pixel detected. In ou
study the binary edge field obtained from the uncompres
image is considered the ‘‘ground truth,’’ or the referen
edge field. The factor max$nd ,nt% penalizes the number o
false alarm edges or, conversely, missing edges.

This scaling factor provides the relative weighting b
tween smeared edges and thin but offset edges. The t
in the sum penalize possible shifts from the correct e
positions. In summary the smearing and offset effects
both included in the Pratt measure, which provides an
pression of overall quality.

C.2 Edge Stability Measure

Edge stability is defined as the consistency of edge tha
evident across different scales in both the original a
coded images.44 Edge maps at different scales have be
obtained from the images using the Canny43 operator for
different scale parameters~with standard deviation of the
Gaussian filter assuming values ofsm51.19, 1.44, 1.68,
2.0, and 2.38!. The output of this operator at scalem is
decided at the thresholdTm, whereTm50.1(Cmax2Cmin)
1Cmin . In this expressionCmax and Cmin denote, respec
tively, the maximum and minimum values of the norm
the gradient output in that band. Thus the edge map at s
sm of imageC is obtained as
218 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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E~ i , j ,sm!5H 1 Cm~ i , j !.Tm at ~ i , j !,

0 otherwise,

whereCm( i , j ) is the output of the derivative of the Gaus
ian operator at themth scale. In other words, using a con
tinuous function notation one has Cm(x,y)
5C(x,y)** Gm(x,y) where

Gm~x,y!5
1

2psm
4 xy expH 2

x21y2

2sm
2 J .

An edge stability mapQ( i , j ) is obtained by considering
the longest subsequenceE( i , j ,sm), . . . ,E( i , j ,sm1 l 21) of
edge images such that

Q~ i , j !5 l ,

where

l 5arg max
l

ù
sm<sk<m1 l 21

E~ i , j ,sk!51.

The edge stability index calculated from the distorted i
age at pixel positioni,j will be denoted byQ̂( i , j ). We have
used five scales to obtain the edge maps of five band-
filtered images. Then a fidelity measure called the ed
stability mean square error~ESMSE! can be calculated by
summing the differences in the edge stability indices o
all edge pixel positions,nd , that is, the edge pixels of th
ground-truth~undistorted! image at full resolution.

E25
1

nd
(

i , j 50

nd

@Q~ i , j !2Q̂~ i , j !#2. ~A13!

For multispectral images the index in Eq.~A13! can simply
be averaged over the bands. Alternatively, a single e
field from multiband images45,46 can be obtained and th
resulting edge discrepancies measured like in Eq.~A13!.

A property that is complementary to edge informati
could be surface curvature,47 which is a useful feature for
scene analysis, feature extraction, and object recognit
Estimates of local surface types,48 based on the signs of th
mean and Gaussian curvatures, have been widely use
image segmentation and classification algorithms. If o
models a gray level image as a three-dimensional~3D! to-
pological surface, then one can analyze this surface loc
using differential geometry. A measure based on the d
crepancy of mean and Gaussian curvatures between an
age and its distorted version was used in Ref. 49. Howe
this measure was not pursued further due to the subjec
assignment of weights to the surface types and the fact
this measure did not perform particularly well in prelim
nary tests.

D Spectral Distance Measures

In this category we consider the distortion penalty functio
obtained from the complex Fourier spectrum of images.10,30
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Statistical evaluation of image quality
D.1 Magnitude and Phase Spectrum

Let the DFT of thekth band of the original and code

images be denoted byGk(u,v) and Ĝk(u,v), respectively.
The spectra are defined as

Gk~u,v !5 (
m,n50

N21

Ck~m,n!expF22p im
u

NG
3expF22p in

v
NG , k51, . . . ,K.

Spectral distortion measures, using difference metrics l
for example, those given in Eqs.~A1!–~A3!, can be ex-
tended to multispectral images. To this end considering
phase and magnitude spectra, that is,

w~u,v !5arctan@G~u,v !#,

M ~u,v !5uG~u,v !u,

the distortion that occurs in the phase and magnitude s
tra can be calculated and weighted separately. Thus one
define the spectral magnitude distortion,

S5
1

N2 (
u,v50

N21

uM ~u,v !2M̂ ~u,v !u2,

the spectral phase distortion,

S15
1

N2 (
u,v50

N21

uw~u,v !2ŵ~u,v !u2, ~A14!

and the weighted spectral distortion,

S25
1

N2 S l (
u,v50

N21

uw~u,v !2ŵ~u,v !u21~12l!

3 (
u,v50

N21

uM ~u,v !2M̂ ~u,v !u2D , ~A15!

wherel is chosen to attach commensurate weights to
phase and magnitude terms. These ideas can be extend
a straightforward manner to multiple band images by su
ming over all band distortions. In the following comput
tions, l is chosen so as to render the contributions of
magnitude and phase terms commensurate, so thatl52.5
31025.

Due to the localized nature of distortion and/or the no
stationary image field, Minkowsky averaging of bloc
spectral distortions may be more advantageous. An im
is divided into nonoverlapping or overlappingL blocks of
b3b, say, 16316, and blockwise spectral distortions lik
those in Eqs.~A14! and ~A15! can be computed. Let th
DFT of the l th block of thekth band imageCk

l (m,n) be
Gk

l (u,v):

Gk
l ~u,v !5 (

m,n50

b21

Ck
l ~m,n!expF22p im

u

bGexpF22p in
v
bG ,
,

e

-
n

in
-

e

where u, v52b/2, . . . ,b/2 and l 51, . . . ,L, or in
magnitude-phase form

Gk
l ~u,v !5uGk

l ~u,v !ueifk
l
~u,v !5mk

l ~u,v !efk
l
~u,v !.

Then the following measures can be defined in the tra
form domain over thel th block:

JM
l 5

1

K (
k51

K S (
u,v50

b21

@ uGk
l ~u,v !u2uĜk

l ~u,v !u#gD 1/g

,

Jw
l 5

1

K (
k51

K S (
u,v50

b21

@ ufk
l ~u,v !u2uf̂k

l ~u,v !u#gD 1/g

,

Jl5lJM
l 1~12l!Jw

l ,

with l the relative weighting factor of the magnitude an
phase spectra. Obviously the measures of Eqs.~A16!–
~A18! are special cases of the above definitions for blo
sizeb that cover the whole image. Various rank order o
erations of the block spectral differencesJM and/orJw can
prove useful. Thus letJ(1), . . . ,J(L) be the rank ordered
block distortions, such that, for example,J(L)5max

l
$Jl%.

Then one can consider the following rank order averag
median block distortion,12(J

L/21J(L11/2)), maximum block
distortion,J(L), and average block distortion, 1/L( i 51

L J( i ).
We have found that the median of the block distortions
the most effective averaging of rank ordered block spec
distortions and we have thus used

S35median
l

Jm
l , ~A16!

S45median
l

Jf
l , ~A17!

S55median
l

Jl . ~A18!

In this study we have averaged the block spectra withg
52 and for the choice of block size we have found th
block sizes of 32 and 64 yield better results than sizes in
lower or higher range.

E Context Measures

Most of the compression algorithms and computer vis
tasks are based on neighborhood information of the pix
In this sense any loss of information in the pixel neighb
hoods, that is, damage to the pixel context, could be a g
measure of overall image distortion. Since such statist
information lies in the context probabilities, that is, th
joint probability mass function~PMF! of pixel neighbor-
hoods, changes in the context probabilities should be
dicative of image distortion.

A major hurdle in the computation of context distortio
is the requirement to calculate the high dimensional jo
probability mass function. Typical PMF dimensions wou
be of the order ofs510 at least. Consequently one incu
the ‘‘curse of dimensionality problems.’’ However, as d
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 219
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Avcıbaş, Sankur, and Sayood
tailed in Refs. 50 and 51, this problem can be solved
judicious usage of kernel estimation and cluster analy
One modification of the kernel method is to identify th
important regions in as-dimensional spaceXs by cluster
analysis and to fit region-specific kernels to these locatio
The result is a model that represents both mode and
regions of PMFs well, while combining the summarizin
strength of histograms with the generalizing property
kernel estimates.

In what follows we have used a causal neighborhood
pixels, i.e., Ck( i , j ), Ck( i 21,j ), Ck( i , j 21), Ck( i 21,j
21), k51, 2, 3. Hence we have deriveds512 dimen-
sional PMF’s obtained from four-pixel neighborhoods
the three bands.

E.1 Rate-Distortion Based Distortion Measure

A method by which to quantify the changes in conte
probabilities is the relative entropy,52 defined as

D~pi p̂!5 (
xPXs

p~x!log
p~x!

p̂~x!
,

where Xs denotes an s-pixel neighborhood andx
5@x1 , . . . ,xs# a random vector. Furthermore,p and p̂ are
the PMFs of the original image context and that of t
distorted~e.g., blurred, noisy, compressed, etc.! image. The
relative entropy is directly related to the efficiency in com
pression and the error rate in classification. Recall also
the optimal average bit rate is the entropy ofx,

H~X!52 (
XPXs

p~X!log p~X!5R~p!.

If, instead of the true probability, a perturbed versionp̂,
that is, the PMF of the distorted image, is used, then
average bit rateR( p̂) becomes

R~ p̂!52 (
XPXs

p~X!log2 p̂~X!5H~X!1D~pi p̂!.

The increase in the entropy rate is also indicative of h
much the context probability differs from the original du
to coding artifacts. However we do not know the true PM
p nor, hence, its rate. We can bypass this problem by c
paring two competing compression algorithms in terms
the resulting context probabilitiesp̂1 and p̂2 . If p̂1 and p̂2
are the PMFs that result from the two compressed ima
then their difference in relative entropy,

Z15D~pi p̂1!2D~pi p̂2!5R~ p̂1!2R~ p̂2!, ~A19!

is easily and reliably estimated from a moderate-s
sample by subtracting the sample average of2 log p̂2 from
that of 2 log p̂1.51 The comparison can be carried out f
more than two images compressed to different bit rates
similar way, that is, by comparing them two by two sin
the unknown entropy term is common to all of them.

As a quality measure for images we have calculatedZ1
for each image when they were compressed at two c
secutive bit rates, for example,R( p̂1) at the bit rate of
220 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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quality factor 90 andR( p̂2) at the bit rate of quality factor
70, etc. As an alternative, the distortion was calculated
an original image and its blurred or noise contamina
version.

E.2 f Divergences

Once the joint PMF of a pixel context is obtained, seve
information theoretic distortion measures53 can be used.
Most of these measures can be expressed in the follow
general form:

d~p,p̂!5gH EpF f S p̂

pD G J ,

where p̂/p is the likelihood of the ratio ofp̂, the context
PMF of the distorted image, and ofp the PMF function of
the original image, andEp is the expectation with respect t
p. Some examples follows.

Hellinger distance:f (x)5(Ax21)2, g(x)5 1
2x,

Z25
1

2 E ~Ap̂2Ap!2dl. ~A20!

Generalized Matusita distance:f (x)5u12x1/r ur , g(x)
5x1/r ,

Z35AE up1/r2 p̂1/r urdl, r>1. ~A21!

Notice that integration in Eqs.~A20! and ~A21! is carried
out in s-dimensional space. Also, we have found accord
to ANOVA analysis that the choice ofr 55 in the Matusita
distance yields good results. Despite the fact that the PM
do not directly reflect the structural content or the geome
cal features in an image, they perform sufficiently well
differentiate artifacts between the original and test imag

E.3 Local Histogram Distances

In order to reflect the differences between two images at
local level, we calculated the histograms of the original a
distorted images on the basis of 16316 blocks. To this end
we considered both the Kolmogorov–Smirnov~KS! dis-
tance and the Spearman rank correlation~SRC!.

For the KS distance we calculated the maximum dev
tion between the respective cumulatives. For each of
16316 blocks of the image, the maximum of the KS di
tances over theK spectral components was found and the
local figures were summed over all the blocks to yie
(u51

b maxk51, . . . ,K$KSu
k% where KSb

k denotes the
Kolmogorov–Smirnov distance of block numberu and of
the kth spectral component. However the KS distance
not turn out to be effective in the ANOVA tests. Instead t
SRC measure had better performance. We again consid
the SRC on a 16316 block basis and we took the max
mum over the three spectral bands. The block SRC mea
was computed by computing the rank scores of the ‘‘gra
levels in the bands and for each pixel the largest of
three scores was selected. Then the correlation of the b
ranks of the original and distorted images was calculate



the

ea
a-
ith
n o
es
b-
ine
re

t b
im
VS
a

ar

a
me

d

ulti
gs

arc
es
h a
ity.

n an
ear
ice
rly.
ea-

dis-
ric
ge

ed
to
in

at
in

ted
s.
r

al

ur
ote
t in

op-
ne

g
est
os-
n a
s.
er-

fer-
/
he

en-

l

on

Statistical evaluation of image quality
Z45 (
u51

b

max$SRCu
k%

k51, . . . ,K

, ~A22!

where SRCu
k denotes the Spearman rank correlation for

uth block number and thekth spectral band.

F Human Visual System Based Measures

Despite the search for an objective image distortion m
sure it is intriguing to learn the role of HVS-based me
sures. The HVS is too complex to be fully understood w
the present psychophysical means, but the incorporatio
even a simplified HVS model into objective measur
reportedly7,10,14,54leads to a better correlation with the su
jective ratings. It is conjectured therefore that in mach
vision tasks HVS-based measures may have some
evance as well.

F.1 HVS Modified Spectral Distortion

In order to obtain a closer relation with the assessmen
the human visual system, both the original and coded
ages can be preprocessed via filters that simulate the H
One of the models for the human visual system is given
a band-pass filter with a transfer function in pol
coordinates:54

H~r!5H 0.05er0.554
, r,7,

e29@ u log10 r2 log10 9u#2.3
, r>7,

wherer5(u21v2)1/2. An image processed through such
spectral mask and then inverse discrete cosine transfor
can be expressed via theU$•% operator, i.e.,

U$C~ i , j !%5DCT21$H~Au21v2!V~u,v !%,

where V(u,v) denotes the 2D DCT of the image an
DCT21 is the 2D inverse DCT. Some possible measures5,49

for the K component multispectral image are
normalized absolute error:

H15
1

K (
k51

K
( i , j 50

N21 uU$Ck~ i , j !%2U$Ĉk~ i , j !%u
( i , j 50

N21 uU$Ck~ i , j !%u
, ~A23!

L2 norm:

H25
1

K (
k51

K F 1

N2 (
i , j 50

N21

uU$Ck~ i , j !%2U$Ĉk~ i , j !%u2G1/2

.

~A24!

F.2 Distance Metric for Database Browsing

The metric proposed in Refs. 14 and 55 based on a m
scale model of the human visual system actually brin
forth similarities between image objects for database se
and browsing purposes. This multiscale model includ
channels, which account for perceptual phenomena suc
color, contrast, color contrast, and orientation selectiv
-

f

l-

y
-
.

s

d

-

h

s

From these channels, features are extracted and the
aggregate measure of similarity using a weighted lin
combination of the feature differences is found. The cho
of features and weights is made to reflect objects simila

We have adopted this database search algorithm to m
sure discrepancies between an original image and its
torted version. In other words, an image similarity met
that was conceived for browsing and searching in ima
databases was adapted to measure the similarity~or the
difference! between an image and its distorted version.

More specifically, we exploit a vision system design
for image database browsing and object identification
measure image distortion. The image similarity metric
Ref. 14 used 102-dimension feature vectors extracted
different scales and orientations both in luminance and
color channels. The final~dis!similarity metric is

H35(
i 51

102

v idi , ~A25!

wherev i are the weights of the component features sta
in Ref. 55 anddi are the individual feature discrepancie
We call this metric a ‘‘browsing metric’’ for lack of a bette
name. For example, the color contrast distortion at scalel is
given by

dm5
1

NlNl
(

i , j 50

Nl

@K~ i , j !2K̂~ i , j !#2,

whereNl3Nl is the size of the image at scalel. K( i , j ) and

K̂( i , j ) denote any color or contrast channel of the origin
image and of the coded image at a certain levell. The
lengthy details of the algorithm and its adaptation to o
problem are summarized in Refs. 14 and 55. Finally, n
that this measure was used only for color images, and no
the case of satellite three-band images.

The last quality measure we used that reflects the pr
erties of the human visual system was the DCTu
algorithm.56 DCTune is in fact a technique for optimizin
JPEG still image compression. DCTune calculates the b
JPEG quantization matrices to achieve the maximum p
sible compression for a specified perceptual error, give
particular image and a particular set of viewing condition
DCTune also allows the user to compute the percepted
ror between two images in units of JNDs between a re
ence image and a test image~http://vision.arc.nasa.gov
dctune/dctune2.0.html!. This JND measure was used as t
last metric (H4) in Table 1.

Acknowledgments

This work was sponsored by NSF INT 9996097, the Sci
tific Council of Turkey: TUBITAK BDP Program. K.
Sayood was supported in part by NASA GSFC.

References
1. S. M. Perlmutteret al., ‘‘Image quality in lossy compressed digita

mammograms,’’Signal Process.59, 189–210~1997!.
2. ‘‘Special issue on image and video quality metrics,’’Signal Process.

edited by C. B. Lambrecht70, 153–297~1998!.
3. T. Lehmann, A. Sovakar, W. Schmitt, and R. Repges, ‘‘A comparis

of similarity measures for digital subtraction radiography,’’Comput.
Biol. Med.27~2!, 151–167~1997!.
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 221



s

eir

al
d

y

e-

ral

,’’

s-

A

gn-
ls,’’
II

men

of

s
g

ods

r-

of

on

of

ive
alk,

hs,
ari-

ec

C

of

for

tric
l

ge

e

-

ure

is-

nal

si-
re

on
em

ing

ter

tics
.

y

e

a-

is

its

ttern

e

e-
od-
y-

T

ng

ge
g,

ge
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