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Hand Vein Biometry Based on Geometry and
Appearance Methods

Aycan Yuksel*, Lale Akarun* and Bulent Sankur**

Abstract

Many biometric systems, such as face, fingerprint and iris have been studied extensively for personal verification
and identification purposes. Biometric identification with vein patterns is a more recent approach that uses the vast
network of blood vessels underneath a person’s skin. These patterns in the hands are assumed to be unique to
each individual and they do not change over time except in size. As veins are under the skin and have a wealth of
differentiating features, an attempt to copy an identity is extremely difficult. These properties of uniqueness, stability
and strong immunity to forgery of the vein patterns make it a potentially good biometric trait which offers greater
security and reliable features for personal identification. In this study, we present a novel hand vein database and
a biometric technique based on the statistical processing of the hand vein patterns. The BOSPHORUS hand vein
database has been collected under realistic conditions in that subjects had to undergo the procedures of holding a
bag, pressing an elastic ball and cooling with ice, all exercises that force changes in the vein patterns. The applied
recognition techniques are a combination of geometric and appearance-based techniques and good identification
performances have been obtained on the database.

Index Terms

Vein biometry, Hand vein database, Infrared imaging, BOSPHORUS hand vein database

I. INTRODUCTION

Developments in biometric technologies have achieved sufficiently high recognition rates under controlled con-
ditions, but the need for reliability, robustness and convenience is still a major requirement that remains unfulfilled.
Identification based on vein patterns emerges as a good candidate for a user friendly interface. Although there
are already some studies regarding the uniqueness of vein patterns, the adversarial effects of temperature changes
and various physical activities have not been considered. An important roadblock to the advancement of hand vein
biometry is the lack of open hand vein databases, and hence, absence of reproducible results. Finally, there remains
several new feature alternatives and feature/classifier fusion schemes that have not yet been explored. In this work,
we intend to address all these three issues.

Anatomically, the shape of vascular patterns in the dorsal region of the hand is claimed to be unique to an
individual even for identical twins [1], and it appears to remain stable over long periods of time. The structure of
the vein patterns can be detected and captured with the help of infrared sensors. The visibility of the vein structure
depends on various factors such as age, thickness of the skin, ambient temperature, physical activity, depth of the
veins under the skin, to name a few. In addition, surface features such as moles, warts, scars and hair can also
affect the imaging quality of the veins.

Identification using vein patterns is less studied compared to other human traits probably because the vein pattern
is not observable under visible light. The structure of the vein patterns can be detected and captured with the help
of infrared sensors. Typically, there are two kinds of imaging technologies, namely Far-infrared (FIR) and Near-
infrared (NIR) imaging. FIR technology that works within the range 8-14 µm is more suitable for capturing the
large veins in the back of the hand, but it is sensitive to ambient conditions and does not provide a stable image
quality. On the other hand, NIR imaging that works within the range 700-1000 nm produces good quality images
when capturing vein patterns in the back of the hand, palm, and wrist. This band is more tolerant to changes in
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TABLE I
COMPARATIVE SURVEY OF METHODS

Reference Data Methods and Results
Verification

C.-L. Lin et
al. [13],

32 users, 30 samples/subjects, to-
tal 960 images

Multi-resolution analysis. 5× enrollment. EER: 3.75

K. A. Toh et
al. [5],

50 users, left and right hands, 10
samples/subjects, total 1000 im-
ages

Palm vein and palmprint scores are fused with SUM rule. SVM
with RBF kernel is optimized for the vein features consisting of
sub-sampled vein lines and for the directional wavelet energy
features for palmprint. 5× enrollment.

L. Wang et
al. [3],

30 users, 9 samples/subjects, total
270 images

Vein images are skeletonized as in [17] and LEM is used.
Triple enrollment. EER is claimed to be 0.

A. Kumar et
al. [27],

100 users, 6 samples/subjects, to-
tal 600 images

EER is 1.14, EER of fusion is 0.38 for left hand and 0.28 for
right hand.
Identification

Y. Ding et
al. [2],

48 users, 5 samples/subjects, total
240 images

The number of the end points and crossing points and the
distances between them are used for feature extraction. Single
enrollment. Identification rate: 99.1%.

Z. Wang et
al. [4]

100 users, 5 samples/subjects, to-
tal 500 images

Single enrollment. Hausdorff, LEM and Gabor methods yield
58%, 66% and 80%, respectively.

A. Kumar et
al. [28],

100 users, 6 samples/subjects, to-
tal 600 images

LRT, Hessian Phase, Ordinal Code and Laplacianpalm and
their fusion is used. In single enrollment combined score is
96.67% for fusion (left hands). 3× enrollment, 99.67%

This work 100 users, 3 samples/user, 4 con-
ditions, total 1200 images

ICA, LEM and NMF methods as well as their fusion are con-
sidered. Identification rates are 94.16% for single enrollment
and 97.33% for double enrollment.

environmental and body conditions, but it also faces the problem of disruption due to skin features such as hairs
and line patterns [3].

L. Wang et al. [3] proposed a person verification system using the thermal-imaged vein pattern in the back of
the hand based on the Line Segment Hausdorff Distance (LHD). They reported correct recognition of all subjects
in a database of 30 persons. A. Kumar et al. [27] present a new technique based on shape features of knuckles
based on minutiae matching of vein junction points. In a later paper, [28] Kumar and Prathyusha have used
the fusion of Hessian phase and ordinal code, two different phase-based representations, namely, Laplacianpalm,
which is an appearance based representation, and localized Radon transform, an orientation based representation. Z.
Wang et al. [4] gave comparisons of shape and texture based methods for vein recognition. While shape similarity
is measured via Hausdorff and Line Edge Map (LEM), texture similarity was measured via Euclidean distance
of Gabor magnitude features. In a dataset of 100 persons, Hausdorff, LEM and Gabor based methods achieved
accuracies of 58%, 66% and 80%, respectively. C.-L. Lin et al. [13] presented person verification results using
hand dorsal images acquired from IR images in the 3.4 - 5 µm band. Their approach is based on the combination
of multiresolution images obtained from the pre-processed thermal vein images. G. Wang et al. [14] proposed
a multimodal person identification system where palmprint and palm vein modalities were combined in a single
image. Locality Preserving Projection (LPP) was used to extract features of the fused images and they called
this “Laplacianpalm”. A summary of literature is presented in Table I. In this table, the second column gives the
database information, such as the gallery size, the enrollment size, and the total number of images; specifically, 5×
enrollment refers to 5 images per subjects in the enrollment set.

Reproducibility of results is an essential requirement for the advancement of a technology. Although there is an
increasing number of papers that report good recognition results, none of them allow open access to their database;
hence their results are not reproducible. Thus in our study, we collected a hand vein database, called BOSPHORUS,
which is open access to researchers (http://bosphorus.ee.boun.edu.tr/). The rest of the paper is organized as follows.
Section II gives the details of the hand-vein database. In Section III we discuss feature alternatives for hand vein
biometry, and in Section IV we present classification and classifier fusion issues. Experimental results are presented
in Section V, and finally, conclusions are drawn in Section VI.
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Fig. 1. Block diagram of the hand vein biometry system. (ICA: Independent Component Analysis, NMF: Non-negative Matrix Factorization,
CSM: Cosine Similarity Measure, LEM: Line Edge Map, LHD: Line Segment Hausdorff Distance)

II. BOSPHORUS HAND VEIN DATABASE

The hand vein biometric identification system consists of four main processing stages: I) image acquisition,
II) hand normalization, III) feature extraction, IV) matching and identity detection; as shown in Figure 1. In this
section, we give details about image acquisition, data collection, and hand normalization.

A. Image Acquisition and Camera Setup

NIR imaging technology and reflection method have been chosen for image acquisition. A monochrome NIR
CCD camera (WAT-902H2 ULTIMATE [8]) fitted with an infrared lens is used to capture the vein patterns in the
back of the hand. This camera has a good sensitivity in the near infrared spectrum (Figure 2(b)). The region of
interest is irradiated by two IR light sources. Light sources are composed of six infrared LEDs which are placed
in a circular combination. Diffusing papers are placed in front of the infrared light sources to scatter the light
uniformly. In order to eliminate the effects of visible light, the setup is installed in a dark room. In a real-life
acquisition set-up, the access location will not be dark, but the device enclosure will control and limit substantially
the amount of interfering visible light. The camera in the overhead position is adjusted approximately 80 cm above
the hand stand. Users were asked to place their hands on a black background with the back of the hand facing the
camera. The images were digitized into 640× 480 pixels with a gray-scale resolution of 8-bit per pixel and after
deinterlacing, the image size was reduced to 300 × 240 pixels. Our hand vein database contains 1200 images of
left hands of 100 different people. Each subject underwent four imaging sessions that consisted of the left hand
• Under normal condition (N: Normal),
• After having carried a bag weighing 3 kg. for one minute (B: Bag),
• After having squeezed an elastic ball repetitively (closing and opening) for one minute (Activity: A),
• After having cooled the hand by holding an ice pack on the surface of the back of the hand (Ice: I).

These sessions intend to simulate physical stress conditions that could occur in real-life are denoted by the mnemonic
symbols N, B, A, I, corresponding to normal conditions, bag carrying exercise, ball pressing exercise and cooling
with ice. In each session we captured three images, which resulted in 3 × 4 = 12 images per subject of his left
hand under four different conditions. The subjects (100 people, 42 female and 58 male) were volunteers chosen
from undergraduate students, staff and administrative members from a large age bracket. The histogram of the age
distribution of the subjects is given in Figure 3. In addition to the left hand images, we collected 300 right hand
images from subjects under normal conditions. The right hand data is intended to test the degree of interchangeability
between left and right hands, or to investigate the performance if both hands were presented. Finally, since any
biometric system should pass the test of time lapse, we collected additional data of left hands under normal
conditions from 25 persons after some time ranging from two months to five months. For each individual, we also
recorded demographic information. The database is presently open access at http://bosphorus.ee.boun.edu.tr/
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(a) Camera Setup

(b) Camera Response

Fig. 2. (a) The hand vein image acquisition setup (b) Acquisition camera’s spectral response
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Fig. 3. Age histogram of the database

TABLE II
DATABASE INFORMATION

Gender Female: 42 persons, Male: 58 persons
Left/Right Handed Left: 2 persons, Right: 98 persons
Age Varying between 16-63
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Fig. 4. Hand vein images of two different subjects and their region of interest using Yoruk’s hand normalization process [6], [7]

B. Normalization of Hand Images

In order to match hand veins correctly, pose and posture normalizations are necessary. Hand images captured in
arbitrary poses and postures are brought to standard finger orientations and pose, using the normalization algorithm
proposed by Yoruk et al. [6], [7]. Yoruk’s algorithm starts with K-means clustering (K=2), to extract the hand from
the background, followed by morphological filtering to fill in holes. This stage yields the silhouette of the hand.
This is followed by several processing steps, namely, hand rotation and translation, finding the finger axes and tips,
removal of ring artifacts, completion of the wrist, estimation of finger pivots and translation of fingers to standard
orientations. The region of interest (ROI) is defined as the 100× 100 image patch extracted from the center of the
palm region (Figure 4).

III. FEATURE EXTRACTION

We have extracted features from images of hands using both appearance-based methods and methods reflecting
the hand geometry. The appearance-based methods consider the dorsal view of the hand in the near infrared band
and project it to subspaces via Independent Component Analysis (ICA) or Non-negative Matrix Factorization (NMF)
methods. The geometry-based method delineates the veins via skeletonization and then describes the vein structure
as a graph.

While the LEM features are vein-oriented, subspace-based features are appearance descriptors. The advantages
of subspace-based features is that they are generative and simple to characterize. Furthermore, they yield a plausible
distance measure when one tries to reconstruct a hand vein image from its subspace. The common appearance-
based features are PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), ICA, NMF and their
kernelized versions. In this work, we opted for the ICA and NMF variety based on our previous successful experience
in face recognition [25] and hand shape recognition [26]. Other interesting classes of features could be local features
tailored to hand images. Examples of such local features are Gabor wavelets, local binary patterns (LBP), SIFT
(Scale Invariant Feature Transform) feature descriptors, and gradient field. When these features are treated along their
spatial coordinates, they become capable of representing both local properties and their configurational information.

We give details of the chosen ICA, NMF and LEM methods below.

A. ICA Features

Independent Component Analysis (ICA) is a technique for extracting statistically independent variables from a
mixture of them. There exist two possible formulations of ICA. In the first architecture, called ICA1, each of N
individual hand-data vectors is assumed to be a linear mixture of an unknown set of N statistically independent
source hands. Thus the observed signals (hand images) {xi(k), k = 1, ..,K}, i = 1, .., N are a mixture of a set of
N unknown independent source signals si which are linearly combined through an unknown mixing matrix A and
where K denotes the vector size corresponding to the number of pixels. This results in the model:

X = AS (1)

where, xi and si are rows of a N x K matrix. In the second architecture, ICA2, the superposition coefficients
are assumed to be statistically independent, but not the basis images. Accordingly, each of K pixels of the hand
images result from independent mixtures of random variables. Eq. 1 still holds but xi and si form columns of a
K×N matrix. The data vectors fed into the ICA analysis are the lexicographically ordered hand image pixels. The
dimension of these vectors is K = 10000, for our region of interest of size 100× 100 in vein images. Briefly, ICA
aims to find a linear transformation W, also called separating or de-mixing matrix, for the inputs that minimize the
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TABLE III
COMPARISON OF BINARIZATION METHODS (ME: MISCLASSIFICATION ERROR, MHD: MODIFIED HD; SEE [10] FOR THE DETAILS OF

THE PERFORMANCE METRICS)

Accuracy ME Hausdorff MHD
Niblack 0.69 0.30 15.85 1.16
Bernsen 0.86 0.13 15.03 0.41
Yasuda 0.94 0.05 12.31 0.27

Wang [3] 0.74 0.25 14.86 0.81
Otsu 0.78 0.21 29.65 2.04

statistical dependence between the output components, the latter being estimates of the hypothesized independent
sources si:

S ∼=WX (2)

We implemented Eq. 2 via fastICA algorithm [11]. Fig. 8 shows the plot of the histograms of the intra-subject
(genuine-to-genuine) differences and of the inter-subject differences (genuine-to-impostor) for ICA1 features.

B. NMF Features

Non-negative Matrix Factorization (NMF) is another matrix factorization technique with the added constraint
that each factor matrix must have only non-negative coefficients [15], though statistical independence is not sought
for. Given a non-negative data matrix X (as in Eq. 1 and 2) of size K ×N , we obtain two non-negative matrices
W and H such that:

X ∼=WH (3)

where W is of size K × L and H of size L × N . Since we force the two matrices to be non-negative, we can
only reconstruct X approximately from their product. The columns of W can be regarded as basis vectors and the
columns of H are utilized as feature vectors of the corresponding vein images. We use Hoyer’s code [16] for NMF
representation.

C. LEM Features

Line Edge Map (LEM) is an approach that extracts lines from an image edge map as features. The algorithm can
be considered as a combination of template matching and geometrical feature matching. It was proposed by Gao
and Leung [9] for face recognition and then applied to vein biometry by Wang et al. [3]. The steps of binarization,
skeletonization and line extraction as adapted to vein images are detailed below. The basic unit of LEM is the
line segment grouped from pixels of the edge map and matching of line segments is based on the Line Segment
Hausdorff Distance (LHD). Two image patterns are considered to be similar if their LHD is small.

The LEM algorithm starts with thresholding and segmenting the foreground (vein) regions. This is followed by
morphological noise filtering and skeletonization, which finally yield the vein line segments. Once the hand images
are reduced to vein skeletons, the recognition will be based on some measure of line graph similarity. Gao and
Leung [9] extend the concept of Hausdorff distance into LHD to compare line patterns. Briefly LHD incorporates
structural information of line segment orientations, line lengths and line-point associations.

1) Image Binarization: We have compared several binarization methods. Global thresholding of NIR images does
not always prove to be successful; hence, we resort to local binarization methods such as Yasuda [10], Bernsen [10],
Niblack [10], Wang [3]. For comparison we also include one global method, Otsu [10]. Based on several ground
truth-images the scores of various similarity criteria [10], such as accuracy, misclassification error (ME), Hausdorff
distance and Modified Hausdorff Distance (MHD) between ground-truth images and test images are shown in
Table III. The best results have been obtained with the Yasuda method.

In the Yasuda method [10] one first applies a normalization process, followed by a nonlinear smoothing, which
preserves the sharp edges and culminating in an adaptive thresholding and segmentation stage. Finally noise filtering
and skeletonization yield the vein line segments.
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Fig. 5. Three LEMs of the users are displayed with different colors on the same figure in order to show the variations.

Fig. 6. LEM extraction steps: (left-to-right) A vein image, Yasuda binarization, noise removal, skeletonization and line segments generation

2) LHD: While Hausdorff distance is a natural measure for comparing similarity of sets and shapes, its extension
called LHD is a measure to compare line patterns. LHD incorporates structural information of line segment
orientations and line-point associations, and hence is effective in comparing two shapes made up of a number
of curve segments.

LHD measures the degree of dissimilarity between two LEMs. LEM is a representation which records only the
end points of line segments on curves. Given two LEMs, M l = {ml

1,m
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p} representing a model in the
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respectively. Using these distances, LHD has been calculated using the equations defined in [9]. LHD steps are

Fig. 7. Illustration of the LHD calculation: 1) Two line segments; 2) Angular distance, 3) Rotation of the shorter segment for parallelism;
4) Paralel distance, l‖1; 5) perpendicular distance, l⊥

given in Figure 7.
Three different LEMs of the same person are superimposed in Figure 5. There are registration problems,

sometimes because of the normalization process, sometimes because of the binarization or skeletonization process,
as well as because of the acquisition conditions.

IV. FEATURE MATCHING AND CLASSIFIER FUSION

In the identification mode, the user does not provide any identity claim, but the system must find out the user’s
identity from a database of enrolled users. For the person identification task, we measure the distance between
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TABLE IV
IDENTIFICATION AND VERIFICATION (EER) RESULTS FOR SINGLE-ENROLLMENT, NAIVE TESTS

Test Set ICA1 ICA2 NMF LEM

Normal Iden.Rate: 88.66 94.16 81.33 68.5
EER: 4.02 2.47 8.14 13.52

Bag Iden.Rate: 78.33 72.33 71.44 73.77
EER: 8.01 13.04 12.77 12.13

Activity Iden.Rate: 75.55 68.88 68.88 71.77
EER: 9.20 13.23 14.11 12.76

Ice Iden.Rate: 68.77 64.88 66.55 65.77
EER: 11.52 14.88 15.08 14.07

All Iden.Rate: 77.82 75.06 72.06 69.95
EER: 8.18 10.90 12.53 13.12

TABLE V
IDENTIFICATION AND VERIFICATION (EER) RESULTS FOR DOUBLE-ENROLLMENT, NAIVE TESTS

Test Set ICA1 ICA2 NMF LEM

Normal Iden.Rate: 94.33 97.33 89.67 81.66
EER: 2.43 1.53 4.00 7.41

Bag Iden.Rate: 88.55 82.88 83.33 88.44
EER: 4.75 8.69 7.33 7.33

Activity Iden.Rate: 86.44 79.44 81.89 86.66
EER: 6.22 8.00 8.33 6.47

Ice Iden.Rate: 77.66 74.77 77.22 80.77
EER: 8.22 10.76 10.89 9.13

All Iden.Rate: 86.74 83.60 83.03 84.38
EER: 5.40 7.24 7.64 7.59

the test feature vector and all the feature vectors in the database belonging to N different subjects. For a person
verification task, one must differentiate the genuine hand from the impostor (in our context, everybody else in
the database) hands as the user provides her hand image in support of her claimed identity. For this purpose, the
distances between the hand of the applicant and all the hands in the database are calculated and the scores are
compared against a threshold.

For ICA and NMF techniques, L1 (mean absolute difference), L2 (Euclidean) and CSM (cosine similarity
measure) were compared and the best results have been obtained with CSM, calculated as:

dcos(ai, atest) =
ai · atest
‖ai‖ ‖atest‖

(5)

We have considered four fusion techniques to improve the performance of the individual schemes used for the
identification and verification tasks. We have used the Borda count technique, majority voting, which is a decision
level fusion technique, and three score fusion techniques: product rule, sum rule, and weighted sum rule [12].

a) Borda Count: Each classifier outputs a rank, and the ranks from individual classifiers are summed and the
identity of the vein pattern is declared to be the one with the lowest sum rank.

b) Majority Voting: Each classifier casts a vote of 1 to a class if the test pattern belongs to that class. The
class having the highest vote is declared to be the identity of the pattern.

c) Z-score Normalized Product: Each classifier produces a similarity value from the test image to the classes.
The values are mapped to the range [0, 1] with z-score normalization. Normalized scores are multiplied to obtain
the final score.

d) Z-score Normalized Sum: After z-score normalization, the scores are summed up to obtain the final score.
e) Z-score Normalized Weighted Sum: Sum Rule is actually a special case of weighted sum with equal weights.

We have experimented with different weights. As expected, giving more weight to the better performing classifier
yielded better results. Accordingly, we assigned the following weights: 0.6 for ICA1, 0.2 for LEM and 0.2 for
NMF.
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V. EXPERIMENTAL RESULTS

We have performed our experiments on the BOSPHORUS hand vein database described in Section II. To describe
the different experiments, we use the following short-hand notation: A-to-B test means that in the experiment the
training set was A and the test set was B; furthermore we denote as “naive test” the case when the training set
consists only of the N set, and the “informed test” denotes the case when all conditions are represented in the
training set. Thus, for example, N-to-N denotes training and naive testing with normals (e.g. first row of Tables IV
and V); N-to-NBAI means training with N and naive testing with all N, B, A and I conditions, and NBAI-to-NBAI
corresponds to “informed testing” with all N, B, A and I conditions.

We use paired t-test to compare the accuracies for statistically significant difference. At a significance level of
five percent the paired t-test confirmed that the algorithms are statistically different for individual test sets. Naturally
the training and test image sets are disjoint in all experiments.

For the sake of clarity, we give the following details about our experiments. In the naive experiments, the training
set consists of normals (N), while there are five test set cases, namely, N, I, A, B and the union of all the four sets.
The results of naive experiments are given in Tables IV, V, VII, VIII. In the informed experiments, the training
sets consist of the union of all four sets, and the test sets again consist of the five cases, N, I, A, B and, the union
of all the four sets. Finally, since three palm vein images were captured per N, B, A and I condition, this gave us
three session rounds in each case. More explicitly, let us denote these images as 1, 2 and 3. In the single enrollment
case, the training and testing combinations were (1, (2,3)), (2, (1,3)), (3,(1,2)); in the double enrollment case, the
training and testing combinations were ((1, 2), 3), ((1,3), 2), ((2,3), 1). We report in the tables the average of these
three rounds.

Fig. 8. Distributions of intra and inter-distances for ICA1 feature vector and single enrollment condition

We have investigated the effect of the training set on the recognition performance. Specifically, we measured the
impact of the stress exercises. For example, if the training set consists of hand images under normal conditions but
does not contain hands that underwent ice, bag or ball stresses, we could conjecture that the performance would
be inferior to the case when these effects are all present in the training set. Thus in the naive set of experiments,
we train with N’s only but test them with N, B, A and I; in the informed set of experiments, we train with N, B,
A and I, and test them also with N, B, A and I.

Similarly we considered the effect of enrollment size, that is, the number of images per subject in the training
set. In our case, since we captured three images per subject per session, the enrollment size could be one or two.
Consider for example, the three sets of normal condition hands denoted as N1, N2 and N3 (each set has 100
images since there are 100 subjects). The single enrollment consists of querying with the N1 set and searching in
the set of 200 images of (N2, N3), (respectively querying with N2 and N3, and searching in the sets, (N1, N3) and
(N1, N3). The double enrollment means querying with (N1, N2) and searching in N3 (and the obvious other two
combinations). The final result is the average of the three combinations. The performance results for all tests (naive
and informed, single and double enrollment) described in Table VI as well as their various fusion combinations are
given in Tables IV- XII, Figure V-D and Figure 10. For identification experiments, we provide identification rate;
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TABLE VI
THE ORGANIZATION OF THE DATA SETS IN THE EXPERIMENTS FOR ENROLLMENT SIZE AND TRAINING SET

Sessions Training Training
Types Size

Naive Tests Single Enrollment N 100
Double Enrollment N 200

Informed Tests 4× Enrollment N,B,A,I 400
8× Enrollment N,B,A,I 800

for verification experiments, we provide Equal Error Rate (EER) figures and Receiver Operating Characteristics
(ROC) curves.

TABLE VII
FUSION RESULTS OF ICA1, LEM AND NMF FOR NAIVE TESTS WITH SINGLE-ENROLLMENT

Test Set ICA1 Majority V. Borda C. Sum Weighted Sum Product
Normal 88.66 86.33 86.00 91.16 93.50 87.66
Bag 78.33 77.33 79.00 84.66 85.66 83.77
Activity 75.55 75.00 76.22 83.33 84.00 82.55
Ice 68.77 72.44 73.44 80.44 79.77 79.44
All 77.82 77.78 78.67 84.89 85.73 83.35

TABLE VIII
FUSION RESULTS OF ICA1, LEM AND NMF FOR NAIVE TESTS WITH DOUBLE-ENROLLMENT

Test Set ICA1 Majority V. Borda C. Sum Weighted Sum Product
Normal 94.33 93.00 93.00 97.33 97.33 93.00
Bag 88.55 88.44 89.88 94.55 94.77 92.44
Activity 86.44 87.33 87.55 92.55 92.22 91.77
Ice 77.66 82.88 84.77 90.22 89.11 89.66
All 86.74 87.91 88.80 93.66 93.35 91.71

A. Choice of features

We have observed that ICA1 features almost always had superior performance throughout all the tests, whether
naive or informed, single or double enrollment, under normal or adverse conditions. However, despite the lower
performance achieved by NMF and LEM features, they still play a useful role when employed in a fusion scheme.

We have considered three score level schemes, one rank level fusion scheme and one decision level fusion scheme
to take advantage of the diversity offered by individual feature types. Among the fusion sets of {ICA1, ICA2, NMF,
LEM}, {ICA1, NMF, LEM} and {ICA2, NMF, LEM}, the best results were obtained with the {ICA1, NMF, LEM}
fusion. Consider, for example, the naive identification test N-versus-NBAI, where the contribution of fusion should
be more relevant (Table VII and Table VIII ). The improvement brought about by the weighted sum rule is 7.9
points in single enrollment (from 77.8% with ICA1 to 85.7% with fusion), and 7.8 points with double enrollment
(from 86.7% with ICA1 to 93.5% with fusion). We found out that the weighted sum rule (with ICA1 weight 0.6,
and weights 0.2 to NMF and LEM) brings a slight advantage on average in the naive tests; but SUM rule (all
three weights set to 0.33) performs consistently better in the informed tests (TablesX and XII ). This indicates that
when there are many enrollment images, the simple assumptions made during the computation of the weights do
not hold.

Majority voting and Borda count also show improvements under challenging conditions such as ice, but since
they are using hard decisions their contributions are not expected as good as the score fusion results. We report
majority voting and Borda count performances for the sake of completeness. Product rule fusion improves in most
cases the performance vis-a-vis the best performing single feature, though not on a par with the sum rule fusion.



11

B. Effect of stressors

The effects of adverse conditions created by cold, strong exercise and weight carrying are displayed in Tables VII-
VIII and X- XII. We report recognition results for Normal, Bag, Activity and Ice conditions as well as for the case
when these four conditions are pooled together (All). As expected, in the naive tests, the performance degrades by
10-20 percentage points. It is interesting to note that ice condition (I) affects the performance more than any other
effect. For example, with ICA1 features, if we compare N-to-N results with those of N-to-I results, we observe that
naive and single enrollment incurs a drop of 20 points and naive and double enrollment 16.7 points. The drops with
the ice condition are less dramatic but still sizeable even with fusion (weighted sum); the losses being 13.7 points
and 8.2 points. The message here is that if the test conditions differ from those of training (normal), performance
drops are inevitable.

C. Effect of enrollment size

The benefit of multiple enrollments can be read off from these tables. Since we have three images per subject,
it is possible to compare only the single and double enrollments. For naive tests and with ICA1 features, the
performance improves for N-to-N tests from 88.7% to 94.3% by 6.6 percentage points as we go from single to
double enrollment (compare tables IV and V). As another case in point comparison of Tables VII and VIII show
that using weighted sum rule, and the N-versus-All test, the performance improves from 85.7% to 93.4% by 7.7
points with the use of double enrollment.

TABLE IX
IDENTIFICATION RATES AND EQUAL ERROR RATES (EER) FOR INFORMED TESTS AND SINGLE ENROLLMENT(4 IMAGES PER SUBJECT,

ONE FOR EACH OF N, B, A AND I CONDITIONS)

Test Set ICA1 ICA2 NMF LEM

Normal Iden.Rate: 94.33 95.33 92.83 87.66
EER: 3.71 1.83 4.49 5.86

Bag Iden.Rate: 91.83 89.33 90.50 92.00
EER: 4.86 5.79 5.21 4.18

Activity Iden.Rate: 91.00 89.16 89.66 92.00
EER: 4.98 5.03 5.50 4.63

Ice Iden.Rate: 89.50 87.33 89.50 89.16
EER: 5.83 4.95 4.48 5.51

All Iden.Rate: 91.67 90.29 90.63 90.21
EER: 4.85 4.41 4.92 5.05

D. Informed tests versus naive tests

If the classifier is trained with images under normal as well as all possible stressed conditions, the identification
and recognition performances definitely improve. In informed tests, the training set consists of normal, bag, activity
and ice images, with varying enrollment size. The first observation in Tables IX and XI is that the order of the best
performing features is maintained as in the naive tests, so that, with a few insignificant exceptions ICA2 is better
when being tested on N’s, that is the NBAI-to-N tests, while ICA1 is better in all the remaining conditions. The
second observation is that double enrollment brings a significant advantage of 5 percentage points in the overall

TABLE X
FUSION RESULTS OF ICA1, LEM AND NMF FOR THE INFORMED CASE AND SINGLE ENROLLMENT(4 IMAGES PER SUBJECT, ONE FOR

EACH OF N, B, A AND I CONDITIONS)

Test Set ICA1 Majority V. Borda C. Sum Weighted Sum Product
Normal 94.33 93.83 94.16 98.16 97.00 96.33
Bag 91.83 92.50 94.00 97.16 96.50 96.16
Activity 91.00 92.16 93.50 97.66 97.33 96.66
Ice 89.50 92.50 93.00 96.83 96.16 96.00
All 91.67 92.75 93.67 97.45 96.74 96.28
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TABLE XI
IDENTIFICATION RATES AND EQUAL ERROR RATES (EER) FOR INFORMED TESTS AND DOUBLE ENROLLMENT (8 IMAGES PER SUBJECT,

TWO FOR EACH OF N, B, A AND I CONDITIONS)

Test Set ICA1 ICA2 NMF LEM

Normal Iden.Rate: 97.00 98.66 96.33 94.33
EER: 2.29 1.02 2.00 3.44

Bag Iden.Rate: 97.00 94.66 95.00 98.00
EER: 3.31 3.00 3.02 1.74

Activity Iden.Rate: 98.00 96.00 96.00 98.00
EER: 2.94 2.33 2.37 2.60

Ice Iden.Rate: 94.66 94.33 95.66 94.66
EER: 4.13 2.64 2.00 3.39

All Iden.Rate: 96.67 95.92 95.75 96.25
EER: 3.17 2.25 2.35 2.79

TABLE XII
FUSION RESULTS OF ICA1, LEM AND NMF FOR THE INFORMED CASE AND DOUBLE ENROLLMENT (8 IMAGES PER SUBJECT, TWO FOR

EACH OF N, B, A AND I CONDITIONS)

Test Set ICA1 Majority V. Borda C. Sum Weighted Sum Product
Normal 97.00 97.66 98.00 99.33 98.66 97.00
Bag 97.00 95.66 95.00 99.33 98.00 99.00
Activity 98.00 76.44 98.33 100.00 100.00 99.33
Ice 94.66 96.33 98.00 99.33 99.00 97.00
All 96.67 91.52 97.33 99.49 98.91 98.08

tests, while this advantage amounted to 9 percentage points in the more disadvantaged, hence difficult naive tests
(Tables IV and V).The second observation is that using more enrollment images (i.e, 8 instead of 4) brings a
significant advantage in the overall tests. The third observation is that feature fusion is advantageous, improving the
overall score in the quadruple enrollment case by more than 6 percentage points using Sum Rule (Table X). This
result is even better than the fusion advantage in the naive case (2.4 percentage points as in Table VII). The fourth
and most important observation is that informed testing, that is, training the classifier with all likely variations to
be encountered during testing provides a very significant performance increase; and it is possible to obtain more
than 99 percent performance on average with the SUM rule, in the informed case with 8 enrollment images.

E. Factors of Time Lapse, Resolution and Population Size

In this section we investigate the effects of such factors as the time elapsed between the training and test image
capture sessions, the way the performance scales with the gallery size, and the imaging resolution.

Part of the database collection process was repeated after three months. Table XIII shows the performance results
where Contemporaneous means hand that enrollment and test images were collected within minutes of each other,
while Time Lapsed means that a hand presently imaged is tried to be identified and/or verified by considering the
hands collected three months ago. A significant drop in performance is observed; pointing to a need for multiple time-
lapse enrollment or template adaptation. Figure 10(a) and 10(b) show how EER changes under increasing resolution
and increase in gallery size. As expected, performance degrades with decreasing resolution, and increasing gallery
size.

TABLE XIII
EFFECTS OF TIME LAPSE DATA (ICA1 NAIVE TESTS)

Version Contemporaneous Time Lapsed

Single Enr. Iden.Rate: 96.00 81.33
EER: 1.98 9.25

Double Enr. Iden.Rate: 98.66 88.00
EER: 0.33 5.02
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Fig. 9. ROC curves of single enrollment and 8× enrollment

Fig. 10. (a) ICA1, EER performances for different resolutions (30×30, 50×50, 70×70 and 100×100) (b) ICA1, EER performances for
different population sizes (20, 50, 80, 100) for naive tests. TEST1 refers to Single Enrollment Tests and TEST2 refers to Double Enrollment
Tests that are explained in Table VI

VI. CONCLUSION

We have collected a hand vein database which we call BOSPHORUS, using near infrared imaging technology,
under adverse conditions mirroring real life situations and designed a new biometric identification system based on
hand vein patterns. The main novelty of the study is the collection of the BOSPHORUS hand vein database, that
includes adversarial conditions, and the study of performance under these conditions. Another contribution is the
extensive experimentation on joint appearance-based and geometry-based features. Notice that a variety of different
features have recently been analyzed in [27].

The appearance-based features are extracted using ICA and NMF algorithms in this work, and they both have
proved superior to the geometry-based LEM technique. Although NMF and LEM are inferior to ICA features alone;
their fusion brings significant advantages, pointing out that they provide complementary information. The major
conclusions can be summarized as follows:

i. According to the results achieved on the employed dataset, ICA architecture 1 (ICA1) proves to be always
slightly better compared to its competitors ICA2, LEM and NMF. Recall that ICA1 presents a parts-based
sparse representation while ICA2 gives a holistic view. ICA2 seems to achieve somewhat better results when
hands are presented without stressing effects.
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ii. For stressed conditions, such as strenuous exercise with the hand, there are large performance drops.
iii. Fusion of the classifier scores under the sum rule improves the performance significantly.

We have shown that hand vein pattern biometry is a promising technique. The BOSPHORUS database is presently
publicly available for the sake of reproducable results at http://bosphorus.ee.boun.edu.tr/. Our future research will
address several related problems such as: i) Contactless hand vein image acquisition, where the registration and
classification are more challenging; ii) The local features of the Gabor, LBP, SIFT or gradient variety; ii) Effects
of time lapse analyzed on a more significant volume of subjects.
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