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Abstract—In this paper, we present an extensive study of 3-D
face recognition algorithms and examine the benefits of various
score-, rank-, and decision-level fusion rules. We investigate face
recognizers from two perspectives: the data representation tech-
niques used and the feature extraction algorithms that match
best each representation type. We also consider novel applications
of various feature extraction techniques such as discrete Fourier
transform, discrete cosine transform, nonnegative matrix factor-
ization, and principal curvature directions to the shape modality.
We discuss and compare various classifier combination methods
such as fixed rules and voting- and rank-based fusion schemes. We
also present a dynamic confidence estimation algorithm to boost
fusion performance. In identification experiments performed on
FRGC v1.0 and FRGC v2.0 face databases, we have tried to find
the answers to the following questions: 1) the relative importance
of the face representation techniques vis-à-vis the types of features
extracted; 2) the impact of the gallery size; 3) the conditions, under
which subspace methods are preferable, and the compression
factor; 4) the most advantageous fusion level and fusion methods;
5) the role of confidence votes in improving fusion and the style
of selecting experts in the fusion; and 6) the consistency of the
conclusions across different databases.

Index Terms—Classifier selection, face representation, feature
extraction, fusion, independent component analysis (ICA), non-
negative matrix factorization (NMF), 3-D face recognition.

I. INTRODUCTION

AUTOMATIC identification and verification of humans
using facial information continue to be an active research

area, particularly with the increasing security concerns in the
last decade. An overwhelming majority of face recognizers are
focused on 2-D intensity images. Despite significant progress
in 2-D intensity-based face recognizers, there are still con-
siderable challenges in uncontrolled environments due to the
handicaps of pose, illumination, and expression variations as
well as occlusion by accessories. With the recent availability
of accurate and affordable 3-D sensors, which are capable
of sensing both 3-D face shape and texture, it is widely be-
lieved that some of the inherent problems of 2-D intensity-
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based recognizers can be surmounted. It is envisioned that 3-D
face recognition can both play a complementary role in 2-D
intensity-based recognition and also as a standalone purely
3-D system. Naturally, 3-D face recognition systems are not
immune from all handicaps of intensity-based systems, as
occlusion and expression problems persist. In this paper, we use
the term 3-D face recognition to specifically refer to the 3-D-to-
3-D matching problem, where both the probe and gallery faces
contain 3-D data. There are also other types of algorithms using
3-D models to solve 2-D-to-2-D matching problems, and these
are outside the scope of this paper.

The 3-D face recognition algorithms in the literature have
the following commonality of structural modules: 1) 3-D face
detection; 2) facial feature localization; 3) face normalization/
alignment and registration; 4) facial feature extraction; and
5) face-matching algorithm and decision unit. The first stage,
i.e., the 3-D face detection in cluttered environments or under
occlusion, is studied in few papers in [1]. This is mostly due
to the fact that the 3-D face capture has to be done in a
limited depth range with the present technology, and therefore,
the background clutter typical nuisance of 2-D face intensity
images is a minor issue. Thus, for most of the systems, the
face detection module is reduced to locating and cropping
the face region from the rest of the body [2], [3]. Automatic
localization of facial landmarks is instrumental for the accurate
registration of 3-D faces, and the registration step itself proves
to be of paramount importance for the subsequent recognition
algorithm. Most of the 3-D face recognition algorithms in the
open literature require prior registration, or the registration
process is an integral part of the recognition algorithm itself.
There are very few papers where rotation-invariant features are
used to match nonregistered 3-D faces [4]–[6].

Some other schemes employ 3-D data concomitantly with
the 2-D intensity data; hence, their registration must solve the
2-D-to-3-D registration problem. Their alignment is followed
by separate 3-D and 2-D facial feature extraction and then
training stage of the face matchers. There exists in the literature
a plethora of facial features [7], [8] and several combinations to
build classifiers.

In this paper, we address the issues of 3-D face representa-
tion, facial features, and fusion schemes. First, we consider the
crucial issue of assessing the role of different feature sets and
classifier mechanisms in a fusion setting. Notice that the choice
of informative facial features and their fusion at the score,
rank, or decision level are still open problems. The coupling
of a specific feature set and a specific classifier is denoted
in this paper as an individual face expert. We then analyze
the benefits of consultation between these experts vis-à-vis
the performance of single experts. Second, we emphasize the
relevance of diverse face representation methods and introduce
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Fig. 1. Overall structure of the proposed face recognition system.

classifier-ensemble-building techniques. Third, some novel 3-D
facial feature extraction techniques are reported. The study
of these problems results in an extensive comparison study.
Notice that both face detection and face registration problems
are outside the scope of this paper. We assume, therefore,
that the face has been localized, and we employ one of the
most frequently used facial-registration methods, namely, the
iterative closest point (ICP) algorithm. The overall structure of
the proposed scheme is shown in Fig. 1.

The paper is organized as follows. Previous work on 3-D face
recognition is presented in Section II. In Section III, coarse
face alignment and fine registration methods are explained.
face representation schemes and feature extraction modules
are introduced in Sections IV and V, respectively. We give a
brief overview of the score-, rank-, and decision-level fusion
techniques in Section VI. Experimental results are provided in
Sections VII and VIII. We conclude in Section IX.

II. PREVIOUS WORK ON 3-D FACE RECOGNITION

We first review the major 3-D face recognition approaches
in the literature from the perspective of their role in a fusion
scheme. At the data level, we discuss various face represen-
tation techniques; at the feature level, we point out to the
diversity of choices; finally, at the classification stage, we study
the fusion algorithms. A recent thorough survey of 3-D face
recognition algorithms can be found in [9].

1) Representation Techniques: The most popular approach
in 3-D face recognition systems has been to convert the 3-D
point-cloud information into 2-D depth images (range images).
This conversion operation is needed because the 3-D data may
not correspond to a regular grid. While the 2-D data are more
familiar to work with, the loss of intrinsic face information due
to resampling and mapping to a regular grid must be accounted
for. When more than one point is mapped to a cell in a 2-D grid,
these points are undersampled during a conversion to 2-D. A
case in point is the sloping parts of the face, which suffer due to
the foreshortening effect in the 3-D to 2-D conversion. Some of
these sloping parts may incorporate interperson differences like
the slopes of nostrils. Once the depth image is formed, one can

treat the 3-D face recognition problem as simply a 2-D image-
matching problem.

Pan et al. [10] design a pose-invariant recognition system
by projecting the preregistered 3-D point-cloud data to a plane
parallel to the face plane. They achieve pose invariance via
a variant of the ICP-based registration. Their projection flat-
tens out the facial surface, which is where their algorithm
differs from other depth-image-based techniques. Their prin-
cipal component analysis (PCA)-based identification method
outperforms other depth-image-based approaches on the FRGC
v1.0 database.

An approach for matching range images, using the original
measured data and not their subspace projection, is discussed in
[11]. In that work, Russ et al. apply the partial-shape Hausdorff-
distance metric to range images. The motivation behind using
the Hausdorff distance is its partial invariance to inconsistencies
such as noise, holes, and occlusions in the 3-D facial data.
Their classification experiments conducted on the FRGC v1.0
database show the superiority of the proposed scheme to the
standard PCA-based matching algorithm.

As an alternative to depth images, it is also possible to cons-
truct 2-D images that represent other properties of 3-D data,
such as surface curvature and surface normals. Abate et al. [12]
generate normal maps, which store three-variate mesh normals
in lieu of the red, green, and blue (RGB) components. The
difference between the normal maps of the two images is
calculated in terms of three difference-angle histograms. The
authors, however, do not report comparative-analysis results.

Many 3-D acquisition systems provide 3-D point clouds as
raw data, possibly coupled with 2-D texture information. Thus,
for many 3-D face recognition systems, point-cloud or point-
set data are the default input data representation [13]–[15]. The
point-cloud representation of a probe face is subjected to the
ICP method for registration, usually to each of the point clouds
in the gallery. The quality of the ICP alignment is generally
sufficiently good to allow for pointwise matching of two face
point clouds. In [16] and [17], all the point sets of the probe
and gallery faces are registered to an average face via the
ICP in order to align the faces to a common reference frame
and to establish dense correspondences. Then, the features are
extracted from thus aligned point sets.

There are several alternatives to the ICP-based matchers. For
instance, Koudelka et al. [18] first locate automatically several
facial landmarks such as nose tip, sellion, inner eye corners,
and mouth center and then sample 150 random points in their
neighborhood. The matching of two facial surfaces is then
accomplished via a mixture of ICP and Hausdorff algorithms.
The use of the Hausdorff measure is beneficial if there are
incomplete or missing data in one of the facial surfaces. The
authors show the feasibility of their method on the FRGC v1.0
database.

One shortcoming of the ICP algorithm is that it can only
handle rigid transformations. However, human faces gener-
ally exhibit nonrigid deformations under expression variations.
Therefore, nonrigid registration algorithms could be beneficial
in establishing the correspondence between facial surfaces. For
this purpose, İrfanoğlu et al. [17] use the thin-plate-spline
(TPS)-warping algorithm. First, several facial landmarks are
located automatically, and a given face image is then warped to
an average face model (AFM) using TPS. A similar idea is also



GÖKBERK et al.: REPRESENTATION PLURALITY AND FUSION FOR 3-D FACE RECOGNITION 157

proposed in [19] where a generic face model is fitted to a given
face, and the related displacement information forms a separate
deformation image. Finally, the biometric signature is obtained
from the wavelet analysis of this deformation image. Although
warping-based registration algorithms may have a potential of
establishing better correspondences around the dynamic facial
regions, they may have the side effect of suppressing charac-
teristic differences between faces [7]. In order to avoid this
side effect, Lu and Jain [20] have suggested the use of person-
specific deformable models. The deformations are learned from
a small group of subjects. Then, the learned deformation model
is transferred to the 3-D neutral model of each subject in the
database via TPS. At the matching stage, the person-specific
deformable models are fitted to the test face using a modified
ICP algorithm where deformation parameters are updated in an
iterative way.

Besides ICP, there are other schemes where the registration
[21] or correspondence matching process [4], [5] is inherent to
the recognition algorithm. Mian et al. [4], [5] used rotation-
invariant tensors that are constructed in locally defined coor-
dinate bases to represent the 3-D faces. At the recognition
stage, the best matching pairs of features, i.e., the correspon-
dences, between the template and test images are found ei-
ther by exhaustive matching [5] or via a 4-D hash table [4].
Bronstein et al. [21] proposed an expression-invariant face
recognition algorithm, where one 3-D face is embedded onto
another face by multidimensional scaling (MDS). The MDS is
used to establish intrinsic geometric correspondence between
two similar but deformed surfaces.

Recently, Samir et al. [6] represented a facial surface as a
collection of planar curves derived from the level sets or (from)
geodesic curves that are centered at the nose tip of the face. The
recognition performance on the FRGC v1.0 face database is
90.4% with three gallery images per subject. The second type of
representation based on geodesic curves is invariant to rotation,
but the authors do not report the results with this technique.

2) Fusion Techniques: Pan and Wu [14] present a 3-D face
recognition system that combines profile and surface matchers.
The three profile experts use one vertical and two horizon-
tal profile measurements. The surface expert makes use of
a weighted ICP-based surface matcher. The similarity scores
from these four matchers are combined by the sum rule. Ob-
viously, their system is based on shape information only. Their
recognition performance on the 3DRMA [22] database having
120 persons shows that the surface matcher, which obtains
8.79% error rate, is better than the profile matchers, and the
fusion of the four experts reduces the error rate to 7.93%.

In [16], Gökberk et al. have briefly discussed shape-only
features such as point-cloud-, surface-normal-, depth-image-,
and profile-based shape information. In this first round of fusion
experiments, they have observed that some fusion schemes out-
perform the best individual classifier. They experimented with
various combination methods such as fixed rules at score level
(sum/product), rank-based combination rule (Borda count), and
abstract-level voting method (plurality voting). In addition, they
have proposed a two-level serial-fusion scheme where the first
level functions as a prescreener, whereas the second level uses
linear discriminant analysis (LDA) to better separate the gallery
images. Their experimental results on the 3DRMA database
show that two-tier serial fusion is most beneficial.

The work presented in [16] can be considered as an initial
attempt to discover the usefulness of various fusion schemes
for 3-D face recognition problem. In the present paper, we
significantly extend the methodology in [16] 1) by the inclusion
of a much broader range of different face experts and 2) by
covering a wider spectrum of possible fusion rules.

Another type of shape-based expert fusion is proposed in
[23]. This approach is essentially a multiregion approach where
different facial-region pairs from the gallery and probe images
are matched, and the matching scores are combined with the
product rule. The local experts compute the surface similarities
of three overlapping regions around the nose by using the ICP
algorithm, and their registration errors by these three surface
matches are then combined. The local experts choose regions
specifically around the nose for expression invariance. The
recognition experiments conducted on the FRGC v2.0 database
show that the proposed multiregion approach obtains 91.9%
classification rate in multiple-probe experiments, which is bet-
ter than the holistic PCA (70.7%)- and the ICP (78.1%)-based
algorithms.

A feature-level fusion scheme is presented in [24] where
global shape features are concatenated with the local features.
The dimensionality of the concatenated vector is reduced by the
PCA method.

Fusion techniques are frequently used when both shape and
texture modalities are available. The standard approach is to
design separate classifiers for each individual modality and to
combine them at the score, rank, or decision level. A typical ex-
ample of this approach is given in [25], where Chang et al. have
used PCA-based matchers for shape (depth image) and texture
modalities and fused their match scores by a weighted sum
rule. The experimental results obtained on the UND database
containing 198 subjects reveal that fusing the texture and shape
modalities achieves 97% identification rate, whereas individual
modalities have 96% and 91% identification rates, respectively.

Ben Abdelkader and Griffin [26] use a local-feature-analysis
(LFA) technique instead of the classical PCA to extract features
from both shape and texture modalities. This classifier com-
bines texture and shape information with the sum rule. Another
interesting variant in this paper is the data-level fusion. The
depth-image pixels are concatenated to the texture-image pixels
to form a single vector. LDA is then applied to the concatenated
feature vectors to extract features. The authors report 100%
and 98.58% accuracies for the LFA- and LDA-based fusion
methods, respectively, for a face database of 185 persons.
These accuracies improve the best single modality (texture)
rates by 0.24% and 1.36% for the LFA and LDA methods,
respectively.

Mian et al. [5] propose the use of local textural and shape
features together in order to cope with the variations caused by
expressions, illumination, pose, occlusions, and makeup. The
textural features are based on scale-invariant feature transform.
Tensors constructed in locally defined coordinate bases are
used as 3-D descriptors. The two schemes are fused at score
level with confidence-weighted sum rule. They have tested their
algorithm with FRGC v2.0. With 3-D local features, they have
achieved identification performances of 89.5% and 73.0% for
probes with neutral and nonneutral expressions, respectively.
These figures improved to 95.5% and 81.0% with fusion of
shape and texture modalities.
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A prominent example of fusion of shape- and texture-based
matching schemes is presented in [27]. Wang and Chua [27]
select 2-D Gabor wavelet features as local descriptors for the
texture modality, and they use point signatures as local 3-D
shape descriptors. These feature-based representations are
matched separately using the structural Hausdorff distance, and
then their similarity scores are fused at the score level by using
a weighted sum rule. These authors had previously used 3-D
Gabor features instead of point signatures as local shape de-
scriptors in [28] in the same setting.

Although most of the studies use fusion of different modal-
ities at the decision stage, it is also possible to combine the
modalities before the decision phase. A typical example is given
in [15], where shape and texture information is merged at the
point-cloud level, thus producing 4-D point features. A variant
of the ICP method is then employed to determine the combined
similarity of textured 3-D facial shapes.

Similar to the work presented in [16], a two-tier combination
idea was also used in [13] for the 2-D texture images. Here, the
ICP-based surface matcher eliminates the unlikely classes at the
first round and also at the second round; LDA analysis is per-
formed on the texture information to finalize the identification.

A different algorithm that uses feature fusion via hierarchical
graph matching (HGM) is presented in [29]. HGM has the
role of an elastic graph that stores local features in its nodes
and structural information in its edges. HGM is fitted to both
the texture-image and shape features since the shape image
is registered to the texture image. The scores produced from
texture and shape HGMs are then fused by a weighted sum rule.
Experimental results obtained on the FRGC v2.0 database show
that, although texture modality significantly outperforms shape
modality, the integration of scores increases the performance
further.

In this paper, we treat the design of a 3-D face recognizer
from a more general fusion perspective. Effectively, we develop
a fairly complete set of individual face classifiers that result
from feasible Cartesian products of face representations and of
feature extraction techniques. This is in contrast to the tradition
in the literature of selecting two complementary experts—one
from shape and the other from texture domain. Another novel
aspect of this paper is to design a scheme to determine the
experts that should have a voice in the consultation session,
rather than inviting every expert indiscriminately.

III. FACE REGISTRATION VIA AN AFM

The registration step is used to transform all faces into a
common coordinate system and then to establish dense point-
to-point correspondences. We use a two-tier scheme consisting
of a coarse adjustment followed by a refined registration step.
The coarse registration uses seven manually located facial land-
marks and then applies the Procrustes algorithm for alignment.
These fiducial landmarks are the four inner and outer eye
corners, the nose tip, and the two mouth corners. An alternative
landmarking scheme would have been to use the automatic
2-D/3-D landmarking method being developed in [30] and
[31]. In this paper, we choose to use manual landmarking to
avoid any errors originating from automatic landmarking and
to focus on the performance of individual experts and their
fusion.

Fig. 2. AFM and its seven landmarks.

We first construct an AFM using a training set of face scans.
We average the coordinates of the landmark points, apply the
Procrustes analysis to the training faces, and then reaverage
the transformed coordinates to obtain the AFM. Fig. 2 shows
the computed AFM and its landmark positions. Once the AFM
is available, any gallery or probe face will be transformed to
the AFM via Procrustes analysis in the coarse-alignment step.
It should be noted that Procrustes analysis rescales the faces in
order to find the best transformation. This output of the coarse
alignment, although essential, is however not adequate for our
recognition goals; hence, it must be followed by a second tier
of the registration process. To this purpose, we invoke the ICP
algorithm to improve the estimates of translation and rotation
parameters. This rigid registration algorithm retransforms the
Procrustes-aligned face scan on a finer scale to the AFM.
Using the output of the ICP algorithm, we can finally establish
dense point-to-point correspondences between each 3-D point
in the AFM with its nearest point in the face image. Therefore,
after the three operations of coarse alignment (Procrustes), fine
alignment (ICP), and nearest neighbor selection, each image
contains exactly the same number of 3-D points registered to
those in the AFM.

Note that the focus of this paper is the design of 3-D face
classifiers, and ancillary problems such as face registration and
detection are of secondary interest.

IV. TYPES OF FACE REPRESENTATION

There are several alternatives for face representation, with
corresponding extracted features. For all feature types, we
start from the registered 3-D coordinate data coming from the
preprocessing stage. We consider five different representation
schemes for recognition purposes: point cloud, surface normals,
curvature-based representation, depth image, and 3-D voxel
representation. In the following sections, we briefly describe
the construction of each representation.

A. Point-Cloud Representation

The point cloud is the set of the 3-D coordinates {x, y, z} of
the points of a face object. A face with N samples is simply
represented in terms of three coordinate vectors X , Y , and Z of
length N . All correspondences among points of different faces
are determined at the registration step.

Although the ensemble of face points encodes the variations
among different faces, there is a very loose neighborhood
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Fig. 3. Texture and depth images of a sample subject.

information in the point-cloud representation due to the 1-D
vector structure of the coordinates. The simplest scheme is to
use the coordinates themselves as features and to calculate the
sum of Euclidean distances between the corresponding points
of two faces. We also employ subspace-based techniques on the
point-cloud data as described in Section V.

B. Depth Image

One of the most conventional ways to represent face data is
the depth image where the z-coordinates of the face points are
mapped on a regular x−y grid by using linear interpolation.
The depth image has the form of a 2-D function I(x, y), which
is similar to an intensity image (Fig. 3, right image). Thus, many
techniques applicable to intensity images for classifying facial-
appearance variations can be directly used for depth images to
bring forth facial-landscape differences among subjects. The
classical dimensionality-reduction techniques such as the PCA,
LDA, and independent component analysis (ICA) have been
previously applied to depth images [8], [16], [32]. In Section V,
we consider a number of feature extraction techniques applica-
ble to depth images.

C. 3-D Voxel Representation

The initial point-cloud data can be converted to a voxel
structure, denoted as Vd(x, y, z), by imposing a lattice. The
first step of the voxel conversion procedure is to define an
N ×N ×N grid box in such a way that the barycenter of
the point cloud coincides with the center of the box. Then,
we define a binary voxel occupancy function V (x, y, z) on this
grid. This is simply an indicator function: If, in a cell at location
(x, y, z), there do not exist any points of the cloud, V (x, y, z)
is set to zero. If there are one or more points in that cell, then
the binary function at that voxel location assumes the value of
one. Therefore, all cells on the face have the value of one, and
the rest of the cells in the space are set to zero, which, in effect,
defines a 3-D shell. Fig. 4 shows a sample point cloud and the
corresponding binary voxels.

We have found it advantageous to convert the binary voxel
data into a continuous form via the distance transformation. We
apply 3-D distance transform to the binary function V (x, y, z)
to fill the voxel grid and obtain Vd(x, y, z). The distance trans-
form is defined as the smallest Manhattan distance of a voxel
point to the binary surface. This function gets a value of zero on
the face surface, and it increases as we get further away from
the surface. By using the distance transform, we distribute the

shape information of the surface throughout the 3-D space and
obtain a smoother representation compared to the binary voxel
description. Fig. 5 shows slices from the voxel representation
based on the distance transform.

D. Surface Normals and Curvature-Based Representation

In the 3-D free-form object recognition community, a
plethora of local surface descriptors exists [33]–[38]. Among
them, surface normals and curvature-based descriptors are the
most popular ones. One can consider the human face surface
as an instance of a free-form object and can use these local de-
scriptors to represent face information. In the surface-normal-
based representation, each point of the facial point-cloud data
is described by its 3-D (nx, ny, nz) unit normal vector.

Curvature-related descriptors are attractive since they are
invariant to rotations, and therefore, they are frequently used
in segmenting 3-D surfaces [1]. Surface normals are features
inspired by differential geometry of surfaces, and they actually
encode the rate of change of the surface over local patches.
The first curvature-based descriptor we use relies on principal
directions, which correspond to the maximum and minimum
curvatures. Each principal direction is a three-vector in the
global coordinate system. We also use two of their derivatives,
i.e., the mean (H) and Gaussian (K) curvatures extracted from
each facial surface point. These will be referred to as mean
curvature- and Gaussian curvature-based representations.

The second local descriptor scheme uses the shape-index
values. The concept of shape index was originally proposed
by Koenderink and van Doorn [39]. For each point p on the
surface, the shape index Si(p) is defined as

Si(p) =
1
2
− 1

π
arctan

κ1(p) + κ2(p)
κ1(p)− κ2(p)

(1)

where κ1(p) and κ2(p) are the principal curvatures at point p,
with κ1(p) ≥ κ2(p). Shape-index values are scalars in the range
[0, . . . , 1] with the exception of planar surfaces. In the shape-
index-based representation, each vertex is characterized by its
shape-index value.

E. 2-D Intensity Images

Each 3-D face has its concomitant 2-D color-texture (RGB)
information, which is also densely registered to its correspond-
ing shape image. We make use solely of the gray-level informa-
tion after histogram equalization in order to mitigate any global
illumination artifacts.

V. FACIAL FEATURE EXTRACTION METHODS

We have explored a fairly exhaustive set of features that
extract discriminative information from 3-D faces. Some of
these features appear in more than one guise. For example,
discrete Fourier transform (DFT) was applied on the voxel
representation and on the depth image. Similarly, ICA was ap-
plied to the point-cloud and depth-field representations of 3-D
faces. We assume that the 2-D data (e.g., depth and intensity
images) have size N1 ×N2, the point clouds have size N × 3,
and the 3-D voxel data have size N ×N ×N .
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Fig. 4. Point cloud and its binary voxel representation.

Fig. 5. Slices from the voxel representation based on the distance transform. The slices are parallel to the frontal view of the face and ordered from back of the
volume to the front.

A. DFT/Discrete Cosine Transform (DCT)

DFT and DCT are prototypical of model-driven features,
and they have been the workhorse of data representation
and classification studies. Their low-frequency coefficient sets
have excellent representation property, particularly for highly
correlated data, where their performances approach that of
the Karhunen–Loeve transform. We have employed DFT-based
features for both depth images and 3-D voxel data since
these two representations provide neighborhood information.
In the point-cloud representation, the 1-D vector structure
only provides point-to-point neighborhood. On the other hand,
DFT/DCT coefficients reflect the spatial dependence of points.

Specifically, for a depth image I(x, y), we calculate its N1 ×
N2-point DFT and extract K ×K low-frequency coefficients
to form a feature vector of size 2K2 − 1 by concatenating
the real and imaginary parts of the coefficients. Likewise, we
compute the global DCT. However, in this case, we obtain a
feature vector of size K2 since the DCT coefficients are real.
For faces represented in terms of voxels, we compute the 3-D
DFT of the distance transform Vd(x, y, z). The feature vector
of size 2K3 − 1 is obtained by concatenating the low-pass
K ×K ×K real and imaginary terms.

Faces have typically slowly varying surface shapes, which
means that there exists a rapid power differential in the DFT/
DCT coefficients with an increasing frequency. We only select
the K ×K (K ×K ×K for the 3-D voxel data) low-pass
coefficients, where K is not larger than ten. While the energetic
coefficients at DC and at very low frequencies represent the
gross structure, a portion of the higher frequency coefficients
carries the shape-difference information between individuals.

These coefficients, which are important for face classification,
tend to be overshadowed by the heavyweight coefficients. This
problem can be remedied by the QR-decomposition technique.
We thus apply QR decomposition to these feature vectors:
F = QR, where F is the matrix consisting of feature vectors
if we have only one training sample per individual. For the
case of more than one sample per individual, F contains the
difference of the feature vector of each subject to its class mean.
In this case, the QR decomposition corresponds to a variant of
linear discriminant analysis, where F corresponds to the within-
class scatter matrix. R is the upper triangular matrix obtained
from QR decomposition of the training features. In effect, we
transform all the feature vectors in both training and test sets by
multiplying them with the inverse of R, so that a feature vector
f is mapped to fT ← fT R−1. Finally, the transformed test and
training feature vectors are compared using the cosine distance.

B. Independent Component Analysis

The ICA and nonnegative-matrix-factorization (NMF) fea-
tures are the typical examples of data-driven features, which
have recently become quite popular. We test the potential of the
ICA scheme as a discriminative feature for 3-D face data. We
extract the ICA coefficients from either the 3-D point cloud or
the depth-image representation.

The ICA is a statistical technique based on a signal model
where the observations are treated as mixtures of unobserved
sources. There are two different architectures for ICA, which
are called ICA1 and ICA2. In ICA1, the basis images are
independent, and in ICA2, the mixing coefficients are also
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Fig. 6. First ten basis faces obtained from (a) PCA and (b) ICA methods.

independent. We utilize the ICA2 architecture, where each
point in a face is considered as a mixture of independent
coefficients. If X is a data matrix incorporating the measured
variables, then it can be split as follows: X = AS, where A is
the mixing matrix, and S contains the independent coefficients.
The columns of A form a basis for the database, whereas the
columns of S provide the ICA features for the corresponding
faces residing in the columns of the data matrix X.

For the point cloud, all x-, y-, and z-coordinates of a face
are concatenated to a single vector. Its dimensionality is then
reduced via PCA. The columns of the data matrix X for the
ICA analysis are constituted of the first K PCA coefficients of
the faces. Then, the FastICA algorithm described by Hyvarinen
and Oja [40] is applied to obtain the basis A and the indepen-
dent coefficients S. Finally, we apply the QR-decomposition
technique to the ICA-based features to reweight the elements
of the feature vector according to their discriminative power.

The ICA analysis for depth images follows a similar proce-
dure. The columns of a depth image are concatenated to form a
single 1-D vector (one for each face). These data are subjected
to PCA reduction, ICA decomposition, and QR normalization.

Fig. 6(a) shows the first ten basis functions derived from
PCA, whereas Fig. 6(b) shows the ten independent face com-
ponents. PCA only captures the second-order variations of the
general face geometry, whereas one can observe that the ICA
basis images resemble the individual faces in the database.

C. Nonnegative Matrix Factorization

NMF [41] is another matrix-factorization technique with the
added constraint that each factor matrix has only nonnegative
coefficients. It has been observed that avoiding the artificiality
of negative coefficients enhances the physical significance of
the component sources. In fact, each source resembles a part
of the object leading to a part-based description. For example,
when we use NMF decomposition of 2-D intensity faces, we
observe that the basis vectors are found to reflect the local
features of faces. We explore the recognition capability of both
ICA- and NMF-based features of 3-D faces in a standalone
mode as well as in fusion scenarios.

Given a nonnegative data matrix X of size M × L, we obtain
two nonnegative matrices W and H such that X ≈WH,
where W is of size M ×K, and H of size K × L. Since
we force the two matrices to be nonnegative, we can only

TABLE I
REPRESENTATIONS, FEATURES, AND ACRONYMS FOR FACE EXPERTS

reconstruct X approximately from their product. The columns
of W can be regarded as basis vectors, and the columns of H
are utilized as feature vectors of the corresponding faces.

Parallel to the preprocessing stage of ICA decomposition, we
first apply PCA to reduce the dimensionality of the raw data
(depth or point-cloud information) and place the first M PCA
coefficients of each face into the columns of the data matrix. We
add a constant to the PCA coefficients to obtain a nonnegative
data matrix. The nonnegative factors W and H are obtained
using the multiplicative update rules described in [42]. Then,
the QR decomposition is applied to the NMF-based features as
described in Section V-A.

D. 2-D Texture-Image Features

We have extracted two different features from the texture
images. The first one is the simple pixel-based approach that
codes the image as a vector of grayscale intensity values.
The second approach is based on the well-known 2-D Gabor
wavelet-based approach [28], [43]–[45]. Since the intensity
images are aligned in the registration phase, we do not need
to employ a time-consuming elastic-bunch graph-based local-
ization algorithm. Instead, we place a rectangular grid of size
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Fig. 7. Illustrative example of the estimation of confidences for the top-ranked classes. (a) Normalized scores (distances) of a test example for each class in
the training set (in increasing order). Classifiers 1 and 2 have different score ranges (denoted by double arrows). (b) Renormalized distances calculated from (2).
Slopes a and b denote the estimated confidences for the top-ranked class for classifiers 1 and 2, respectively.

M ×N and obtain Gabor coefficients only at the grid points.
Five different frequencies and eight equally spaced orientations
are used to generate Gabor kernels. Therefore, in the Gabor-
based representation scheme, we obtain a feature vector of
dimensionality M ×N × 40. It is also possible to apply feature
transformation methods to the raw Gabor features. Indeed, we
find it useful to apply LDA to the Gabor features if sufficient
training data are available. Therefore, we make use of two
different schemes for the texture-based Gabor classifier: the one
that uses raw Gabor magnitudes, and the one which extracts
LDA coefficients.

Table I shows all of the representation techniques and their
corresponding feature extraction methods. As a result of the
feasible Cartesian product of representations and features, we
create 16 different face experts. Their acronyms, as given in
Table I, will be used to represent the corresponding experts in
the rest of the paper.

VI. FUSION METHODS

A survey of classifier-fusion techniques used in 3-D face
recognition community (Section II) reveals the dominance of
fixed combination rules such as sum and product rules [46]. The
preference for these methods stems from the following facts:
1) they are simple yet effective; 2) the number of training
samples per subject is very limited in face recognition applica-
tions, and this precludes more advanced classifier combination
methods such as stacking [47], mixture of experts [48], bagging
[49], and AdaBoost [50]; and 3) integration at score, rank, or
decision level is flexible, in that a new expert’s opinion can
be easily incorporated without affecting the existing experts.
To the best of our knowledge, [7] and [16] are the only two
principled studies of the tradeoffs of various fusion algorithms
for the 3-D face recognition problem.

In the sequel, we briefly review a number of fusion meth-
ods applicable to 3-D face recognition systems. Abstract-level

fusion algorithms are used to fuse the individual experts that
produce only class labels. In this category, plurality voting
(PLUR) is the most commonly used one, which just outputs the
class label having the highest vote. If the classifiers produce
a ranked list of class labels, then rank-level fusion schemes
can naturally be used. In this second category, the Borda-
count method is often used. The Borda scheme calculates the
combined ranking by summing the class ranks as assigned by
the individual classifiers. The fused opinion is then simply
the class having the smallest total rank sum. The third fusion
category is commonly referred to as the score- or measurement-
level fusion since, given a test pattern, individual classifiers
produce class similarity scores. These scores can be combined
by using simple arithmetic rules such as sum, product, min,
max, and median rules after score normalization [46].

We have devised a method to improve the score- and abstract-
level combination methods using the estimated confidences of
individual classifiers. The confidences can be attributed accord-
ing to the similarity scores that are reported by the classifiers.
A caveat is that it may be misleading to use normalized scores
of the top-ranking class labels due to noncommensurate score
normalizations. Score-normalization techniques, such as the
min–max method, use only the training set, and their gener-
alization ability is not optimal. A sample case is shown in the
piecewise linear curves in Fig. 7(a), where the x-axis denotes
the rank, and the y-axis denotes the distance scores in increas-
ing order, for a given test pattern. Reading off from the graph
at the first rank (x = 1), we see that the nearest class found
by the second classifier has a distance of 0.06, and the nearest
distance found by the first classifier is 0.13. Accordingly, the
second classifier seems to be more confident than the first one.
However, in this particular case, this is wrong since the score
range of classifier 1 (0.13–0.9) is different from that of classifier
2 (0.06–0.8), and the second classifier generally gives lower
score values. This pitfall is due to the insufficient training data



GÖKBERK et al.: REPRESENTATION PLURALITY AND FUSION FOR 3-D FACE RECOGNITION 163

in estimating the score-normalization parameters. Obviously, if
the classifier score ranges were the same, then the scores could
be used right away as confidences.

To compensate for range disparity, we propose to use a
differential confidence measure, i.e., the relative distance be-
tween the first two nearest neighbors of the classifier. The
procedure is as follows. Given a probe image, we generate
d = [d1, d2, . . . , dN ] as the vector of ranked distances to the
N classes. Here, d1 is the distance between the test sample
and its nearest class in the training set, whereas dN is that of
the least similar one. An obvious score range for a classifier is
r = dN − d1, whereas we prefer the more robust median esti-
mate r = Med(d1, d2, . . . , dN )− d1. The score normalization
is then effected via the following:

d′i =
(di − d1)

Med(d1, d2, . . . , dN )− d1
, i = 2, . . . , N. (2)

Finally, the classifier confidence score is declared as simply
d′2, as shown in Fig. 7(b). One can interpret the d′2 corrected
confidence as the slope of the d′ curve at the x-intercept. After
this correction, the classifier 1 in the example of Fig. 7 becomes
the higher confidence classifier.

In [51], a similar idea is used to weight the scores during the
SUM rule-based fusion phase. However, in our approach, once
we compute the confidences, we do not use score values since
they usually have different ranges due to the suboptimal score
normalization. We propose to use an improved version of the
plurality voting—the modified plurality voting (MOD-PLUR):
Whenever there are ties, we select the class label having
the highest average confidence value among the equiprobable
classes.

For comparison purposes, we keep track of the simpler
approach where the class with the greatest confidence among
the top-ranked classes is selected. This second approach will be
referred to as the highest confidence (HC) fusion.

VII. EXPERIMENTAL RESULTS

A. Face Database and Experimental Protocols

We have tested our algorithms on two databases, namely, the
FRGC v1.0 and the FRGC v2.0 [51], [52]. For both databases,
texture information is stored as RGB values with 480 × 640
resolution. Shape data contain between 30 000 and 40 000 3-D
coordinates. Although the quality of the scanned data is high,
there are two types of noise affecting 3-D faces: small protru-
sions and impulse noise-like jumps.

After the preprocessing operations of alignment and crop-
ping, the original 3-D point clouds with varying number of sam-
ples are reduced to a fixed number of registered 16 560 points,
and the correspondences are established. Similarly, depth and
texture image resolutions are reduced to 281 × 321.

The original FRGC v1.0 database contains 943 3-D scans of
275 subjects. We had to use a subset of the original database
since 75 subjects had only one scan, and 14 3-D scans were
badly registered with the texture data. Thus, the part of the
database involved in our experiments contained 854 2-D and
3-D scans of 195 subjects. Each subject had at least two and at
most eight 3-D scans. The FRGC v1.0 database consists mostly
of frontal faces and does not exhibit significant expression

TABLE II
EXPERIMENTAL CONFIGURATIONS FOR THE FRGC V1.0 DATA SET

variations. However, some scans have slight in-depth pose
variations and different expressions.

In the FRGC v2.0 database, there are 4007 face scans of
465 subjects. The subjects in the FRGC v1.0 database are
included in this database, too. We have eliminated 55 subjects
since they had only one scan. Thus, we have used 3952 scans of
410 subjects in our identification experiments. The FRGC v2.0
database, as opposed to v1.0, contains face scans with signif-
icant expression variations and presents a grander recognition
challenge.

For FRGC v1.0, we have designed four different experimen-
tal configurations, as shown in Table II. Each configuration
contains a different amount of training samples per subject.
The subscript i in experiment Ei denotes the number of train-
ing samples per subject in that experiment. The reason for
the different populations is that in the FRGC v1.0 database,
195 subjects have more than two 3-D scans, 164 subjects have
more than three scans, etc. Thus, E1 is designed so that every
subject possesses only one image in the training set, whereas
the rest (854− 195 = 659 images) are placed in the test set.
When there are two or more images per subject, one can assign
the role of training and test samples in a round-robin fashion.
For example, if there are n images per subject, then there
exist n different ways of selecting the probe (test image) and
the gallery (remaining n− 1 training images). We call each
such assignment a “fold” and report performance results as
the average of these folds. The number of folds is shown in
the last column of Table II. The most difficult experiment is
obviously E1; while there exists a single training image per
person, both the enrolled population and the number of test
images are largest.

In the experiments with FRGC v2.0, we have only considered
the case where there is only one gallery image in the database.
Since we have called the corresponding experiment protocol
E1 for the FRGC v1.0 data set, we call this protocol E ′1.
However, the two experimental protocols have an important
difference: we have used the FRGC v1.0 to train our subspace-
based methods such as the ICA and NMF and used the class
information in FRGC v1.0 to estimate the LDA and QR-
normalization parameters. Then, these parameters and the basis
images were fixed and were used to calculate the feature vectors
of the gallery images as well as the probe images of FRGC
v2.0. We have chosen the earliest scan of each subject as the
gallery image. All the 410 gallery images are neutral, i.e., they
do not have facial expressions. All the other scans are used as
test images: Thus, we have 3542 test images. Some 1984 of
the test images are neutral faces, and the remaining 1558 faces
exhibit expression variations.
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TABLE III
BASE EXPERTS’ AVERAGE RANK-1 IDENTIFICATION PERFORMANCES (IN PERCENT) ON THE FRGC V1.0 DATABASE

B. Comparative Analysis of Individual Face Experts

Table III shows the rank-1 correct classification rates of
the face experts for the four experimental setups conducted
on FRGC v1.0, where the boldface figures denote the top
three competitors in that category. Each expert relies on a
different feature extraction method and thus has different input-
feature-vector size. For each method, we provide feature di-
mensionality and the distance measure used. Note the wide
disparity in feature dimensionality. For example, transform-
domain features have a compression ratio of 1 : 350 vis-à-vis
the raw point-cloud data. Moreover, a distance measure ap-
propriate for each feature type was determined experimentally
from the L1, L2, and COS set as given in Table III. For the
multidimensional features, i.e., surface normals, principal di-
rections, and point-cloud coordinates, the distances are simply
calculated for each dimension separately and then summed.
For these cases, the distance measure has the additional sym-
bol Σ. One exception is the curvature principal directions
(CURV-PD) method since this feature consists of two “three
vectors.” Therefore, the distance is calculated by the sum of
two three-vector differences. By inspecting the results obtained
on the FRGC v1.0 database, we find it useful to state the
following comments.

1) Not surprisingly, there is a jump in performance between
the single-gallery case E1 and the experiments with at
least two training images per subject. In fact, almost half
of the face experts attain a nearly perfect classification
whenever at least two training face samples are provided.

2) For the single-gallery experiment E1, the top three ex-
perts are all related to surface curvatures [CURV-PD,
curvature shape index method (CURV-SI), and surface
normals method (SN)]. We consider the surface normals
to form an indirect expression of surface curvature. In the
multigallery experiments (E2, E3, and E4), the subspace
techniques PC-NMF, PC-ICA, and depth image-based
discrete cosine transform method (DI-DCT) outperform
others. This shift from surface to subspace experts as
more data become available is intriguing but can be

explained as follows. The subspace techniques use all of
the available data collectively to extract features, whereas
the surface techniques still rely on individual but multi-
ple comparisons. For example, the PC-NMF technique,
which has the perfect score in E3, falls to a mediocre
position in E1 with a score of only 85%. We conjecture
that the subspace techniques achieve their full potential
when adequate training data are supplied to construct
their feature subspaces. The subspace techniques need
more training samples to model the within-class vari-
ability through the analysis into the basis faces and the
corresponding coefficients. The final QR-normalization
step in the subspace-based techniques also requires at
least two training samples per subject in order to reweight
the features according to class separability.

3) One important observation is that the discrimination
abilities of surface-based descriptors i.e., CURV-PD,
CURV-SI, SN, and PC-XYZ, are better than others. An-
other observation is that the 3-D directions of the min-
imum and maximum curvatures carry better discrimina-
tory information as compared to the scalar version of the
curvature information, i.e., magnitude alone of the mean
or Gaussian curvatures. For example, principal direction-
based CURV-PD expert improves the identification accu-
racy by almost 2% when compared to shape-index-based
CURV-SI classifier.

4) Inspection of the performance scores in Table III reveals
that face recognition experts using similar face repre-
sentation methods achieve similar scores. Thus, it is not
the feature type per se that is the determining factor but
the underlying information representation. In fact, we
may group the face experts in the order of decreasing
discrimination power as follows: curvature-, point-cloud-,
depth-image-, texture-, and voxel-based. Once the rep-
resentation type is chosen, the performance variations
due to features become relatively small. Hence, we
should shift the focus from the choice of feature to the
choice of representation. To give an example, consider
ICA- versus NMF-based features for experiment E1.
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Fig. 8. Misclassified faces in experiment E1. (1) Pan variation. (2) Incorrectly
normalized faces. (3) Tilt variation. (4) Errors due to hair region.

TABLE IV
BASE EXPERTS’ RANK-1 IDENTIFICATION PERFORMANCES (IN PERCENT)

FOR E′
1 EXPERIMENT ON THE FRGC V2.0 DATABASE

The depth-image-based classifiers DI-ICA and DI-NMF
obtain 72% average performance rate. On the other hand,
with the point-cloud representation, PC-ICA and PC-
NMF achieve 85% average recognition rate. Hence, it is
the representation (depth versus point cloud), rather than
the feature extraction tool, that is the determining factor
(ICA versus NMF).

5) In terms of the usefulness of shape and texture modalities,
we observe the clear superiority of the shape-based face
classifiers. In this paper, we used Gabor-wavelet-based
2-D recognition algorithm since Gabor-based algorithms
are widely used in the literature [28], [43]–[45]. However,
the 2-D texture-based Gabor method can only attain the
appallingly low 74.73% correct classification rate in E1.

Fig. 8 shows four sample face images misclassified by all of
the 16 face experts in experiment E1. Blue face (lighter) is the
gallery image, whereas the red (darker) face is the misclassified
probe image. Errors generally stem from incorrect registration
of faces. Pose discrepancies along both vertical and horizontal
axes are visible in the first and third images. Another source of
error is particularly visible in the forehead regions due to the
presence of hair (see the first and fourth images).

Table IV shows the individual rank-1 correct classification
rates on FRGC v2.0 with the single-gallery-image setup. As
stated before, the FRGC v1.0 database has been used to tune
the parameters of the subspace-based methods, the QR normal-
ization, and the linear discriminant functions. In the FRGC v2.0

experiments, we apply the LDA to the features of PC-XYZ, SN,
CURV-K, CURV-H, CURV-SI, CURV-PD, pixel-based texture
method (TEX-PIXEL), and Gabor-based texture method (TEX-
GABOR) methods. For the DI-PIXEL approach, the PCA
feature extraction algorithm is employed to compute the feature
coefficients. Although we apply LDA and PCA to the raw fea-
ture vectors in the v2.0 database, we keep the names of 3-D face
experts as used in the v1.0 experiments in order to avoid confu-
sion. Our experimental results show that, with the help of FRGC
v1.0 training set, it is possible to significantly improve the
identification rates of these methods when compared to using
their raw features only. The second column of Table IV displays
the feature dimensionality of each method. For the methods that
use LDA or PCA, dissimilarities between feature vectors in the
transformed subspace are calculated using the cosine distance.
For DFT-, DCT-, ICA-, and NMF-based methods, we have in-
creased the dimensionality in subspace-based techniques (when
compared to the FRGC v1.0 experiments) since we need
more features to discriminate between the subjects in a larger
database. The individual performances in FRGC v2.0 can be
interpreted in relation to the results obtained with FRGC v1.0
as follows.

1) Point-cloud-based PC-ICA and PC-NMF methods per-
form best, yielding 88.31% and 86.34% rank-1 identifi-
cation accuracies, respectively. Since we have built the
subspace models using FRGC v1.0, we had enough data
to construct the subspaces.

2) In general, point-cloud-based methods perform better
than depth-image-based methods. The best depth-image-
based method, namely, the DI-DCT, reaches 76.14%
identification rate, whereas all of the point-cloud ap-
proaches attain identification rates greater than 80%.

3) The best two surface-descriptor-based approaches, the
SN and the CURV-PD, attain 83.79% and 80.35% recog-
nition rates, respectively.

4) Contrary to the situation in the FRGC v1.0 experiments,
the Gabor-based texture classifier now attains similar
identification rates when compared with the shape-based
classifiers. This improvement is due to LDA transforma-
tion that uses a sufficiently large training set from the
FRGC v1.0 database.

For the FRGC v2.0 simulations, we also implemented 1 : 1
ICP-baseline matcher for comparative analysis with the PC-
XYZ algorithm. Given a probe scan, the ICP-baseline matcher
tries to register that probe face to all of the gallery scans, and
it outputs the class having the smallest registration error. As
explained in Section III, our PC-XYZ algorithm essentially
follows the same procedure, but with the help of a single AFM,
thus speeding up the registration process. In order to see the
effects of the AFM-based rapid-registration algorithm on the
identification performance, we carried out identification simu-
lations for the ICP-baseline algorithm on the v2.0 database. In
order to decrease the time complexity, we have used the cropped
central facial regions (see the AFM in Fig. 2 for the illustration
of the cropped regions used in our simulations) and reduced
the point-cloud size by a factor of four by taking every other
column and row.1 The ICP-baseline matcher obtains 78.43%

1The 3-D point clouds are stored in matrices of size 480 × 640 in the FRGC
file format.
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TABLE V
RANK-1 IDENTIFICATION PERFORMANCES (IN PERCENT) OF THE FUSION

METHODS ON THE FRGC V1.0 DATABASE

correct classification rate, which is 1.64% worse than the PC-
XYZ performance (see Table IV, second column). A similar
ICP-baseline identification performance (78.1%) is reported
in the work of Chang et al. [23] who use a very similar
experimental setting on the FRGC v2.0 database (see Table XI
for the details of their experimental setup). It should be noted
that the PC-XYZ algorithm uses LDA feature extraction which
may explain this performance improvement. Our AFM-based
registration scheme orders the 3-D features, which turns out
to be beneficial since it vectorizes unordered features. This
enables the application of any statistical feature extraction
algorithm such as the LDA on the ordered 3-D feature vectors,
which would not be possible in the traditional 1 : 1 ICP-based
matching.

C. Comparative Analysis of Fusion Methods

In this section, we discuss the impact of the decision fusion
methods in improving the recognition performance. Table V
presents the rank-1 correct classification accuracies of different
fusion techniques for the four experimental configurations: E1,
E2, E3, and E4. In each fusion method, all of the 16 base
face experts listed in Table III are combined. In the columns of
Table V, the numbers in parentheses denote the classification
rate improvement (or loss) with respect to the best individ-
ual face expert in that experimental category. For example,
in experiment E1, the best face expert (CURV-PD) obtains
91.88% classification rate, and all improvement figures in the
E1 column of Table V are calculated with respect to this
baseline. To facilitate comparisons, these base expert accuracies
are shown in the second row of the table with legend “Best
Individual.” For each experiment, the best fusion accuracies
are highlighted in boldface. As expected, the fusion gains
diminish from harder toward simpler experiments, i.e., from
E1 to E4. Therefore, it makes sense to analyze the advan-
tage of fusion methods, particularly for the most challenging
experiment—the E1.

One can generally observe that fusion may cause significant
classifier performance losses with respect to the best expert’s
if the fusion method is not judiciously chosen. On the other
hand, the contribution of fusion methods remains modest even
in the most difficult experiment. More specifically, the sum
rule, which is the most widely used fusion technique in the
3-D face community, reports a slight improvement of 0.15%.

The product rule performs very badly in E1, but contributes
positively in other experiments, pointing out again to the sin-
gularity of the single-gallery experiment. This performance
degradation in E1 is due to the insufficient amount of training
samples to estimate the score range with the min–max tech-
nique. If the training set is small, the estimated normalization
parameters do not generalize well in the identification phase.
This problem does not occur in experiments E2, E3, and E4

where sufficient training data exist.
Min, max, median, and Borda-count methods do not sur-

pass the accuracy of the best face expert in the respective
experiments. A few words of comment are in order for the
Borda-count method. Should one use all the possible ranks from
one up to the subject size or the top-ranking ones? We have
observed that combining the ranks of the top three achieves
better results as compared to combining, for example, those of
195 subjects or any other subset. The fusion loss, as in Table V,
becomes, with this top-three Borda, a fusion gain of 1.97, 0.64,
0.16, and 0.00 points for the four experiments E1, E2, E3, and
E4, respectively. Apparently, the most important information is
in the top-ranking face experts.

Plurality voting, despite its simplicity, performs very well.
For example, it improves the best expert’s classification rate by
1.52% in E1. The modified plurality (MOD-PLUR), presented
in Section VI, performs better than its classical version (cf.
MOD-PLUR with PLUR). The advantage of using confidence-
aided fusion becomes more evident when we compare it with
the performance of the HC fusion rule. Essentially, the HC rule
is a classifier-selection method similar to the frequently used
MIN fusion rule. The only difference between the HC and MIN
rules is that the HC rule uses confidences to reach a decision,
whereas the MIN rule uses normalized scores to select the final
class label. For experiment E1, the MIN rule has 88.54% iden-
tification rate. However, the HC rule obtains 93.32% identifica-
tion rate which is better than the best face expert in the ensemble
by 1.44%. This observation is very important and shows the
superiority of the confidence-assisted fusion scheme. To recap,
we recommend the use of the relative distance between the first
and the second class candidates, if correctly normalized score
measurements are not available, which is usually the case in
single-gallery experiments. Table VI shows the performance
improvement due to fusion of all 16 face experts in single-
gallery experiment of FRGC v2.0. This time, enough training
data are available for normalization: min–max score normaliza-
tion parameters are calculated from the whole v1.0 database. It
is seen that with the correct estimation of normalized scores,
the fixed combination rules, such as the sum and product
rules, offer the best improvements: they obtain 93.56% and
93.08% identification rates, which are 5.25% and 4.77% better,
respectively, than the best individual face expert (PC-ICA).

VIII. WHICH EXPERTS TO INVITE FOR CONSULTATION

A. Classifier Selection by Sequential Floating
Backward Search (SFBS)

In Section VII-C, we have fused the decisions of all the
16 face experts. However, it is not immediately obvious whether
including all experts in a fusion scheme is the best scheme
to follow simply because these individual experts may be
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TABLE VI
RANK-1 IDENTIFICATION PERFORMANCES (IN PERCENT) OF THE FUSION METHODS ON THE FRGC V2.0 DATABASE

correlated; hence, they may not be proffering useful informa-
tion. One idea is to use a classifier-selection method to design
a better ensemble of experts [53]. The brute-force solution
would be to construct all possible ensembles and select the
best one. However, this is not practical given the number of
combinations. Therefore, several heuristics such as incremental
addition [54], pruning [55]–[57], and evolutionary algorithms
[58], [59] are proposed in the classifier-selection literature.

We use a similar approach and formulate the classifier-
selection problem as a feature-selection problem. In analogy to
the feature-selection methods, we consider each classifier as a
feature and apply the SFBS [60] to find the near-optimal subset
for each fusion technique. The SFBS-based classifier-selection
algorithm can be stated as follows.

1) Initialization step: Start with the total ensemble set (Ωin)
of all the face experts: Ωin = {e1, . . . , en}. Set the dis-
carded face-expert subset to an empty set: Ωout = ∅.

2) Exclusion step: For each face expert ei ∈ Ωin, remove
this expert from Ωin and obtain the candidate subset
Ωcand = {Ωin − ei}. Calculate the classification rate of
the candidate ensembles. Select the candidate subset,
which produces the best classification rate (Ω∗cand). If
the accuracy of the selected candidate is greater than or
equal to the accuracy of the set Ωin, then perform the fol-
lowing updates: Ωin = Ω∗cand, and Ωout = {Ωout

⋃
ei}.

Otherwise, stop.
3) Inclusion step (If the cardinality of the Ωout > 2): Form

a candidate subset Ωcan by including a single face expert
ei from the previously discarded face-expert subset Ωcan:
{Ωin

⋃
ei}. If the classification rate of the candidate set

Ωcan is better than the accuracy of the set Ωin, then
include expert ei to the subset Ωin = {Ωin

⋃
ei} and

remove ei from the Ωout = {Ωout − ei}. Try all of the
remaining experts in the subset Ωout to include to Ωin in
this fashion.

4) Try the exclusion and inclusion steps successively un-
til there is no performance improvement. Output the
subset Ωin.

We have applied the SFBS algorithm to SUM, PRODUCT,
PLUR, HC, and MOD-PLUR fusion schemes and found near-
optimal subsets for E1. The results are shown in Table VII. The
second column of Table VII shows the selected face experts in
the found subsets. It is clear from the classification accuracies

of experiment E1 that it is possible to get better ensembles in
terms of identification performance. For example, the MOD-
PLUR fusion rule attains 95.22% identification rate by combin-
ing only eight face experts, which is significantly better than
using all of the 16 face experts in the original MOD-PLUR
method (93.63%). It should be noted that these subsets were
found by applying SFBS for experiment E1, and the recognition
accuracies of the other experiments were reported for these
specific subsets. This explains the performance degradation
of the PRO fusion rule in E4. We have chosen to report the
accuracies for experiments E2, E3, and E4 in order to test the
generalization ability of the SFBS-based classifier-selection al-
gorithm. It is more appropriate to apply the SFBS algorithm to a
separate validation set and then to report the final classification
rates on an independent test set. However, our main concern in
this paper is not to design a classifier-selection algorithm but
to give a proof of the concept that it is possible to construct
better ensembles without using all of the available face experts.
However, for the FRGC v2.0 experiments, we can measure the
generalization ability of SBFS-based ensemble construction by
selecting the best classifier ensemble using the v1.0 database
and then by reporting its identification accuracy on the v2.0 set.

Floating search-based ensemble construction also offers im-
proved accuracy for the FRGC v2.0 experiments. The ninth row
of Table VI shows the selected experts found by the SFBS
algorithm on the v2.0 database for the SUM rule method in
experiment E′1. These seven classifiers attain 95.45% identi-
fication rate which is 7.14% better than the best single face
expert. It is worthwhile to note that TEX-PIXEL approach,
which can be considered as a weak classifier, is included in
the best ensemble subset. The reason for this behavior will be
clearer in the next section when we perform correlation analysis
of the base face experts. The last row of Table VI shows the
generalization ability of the SFBS-based ensemble formation.
Here, the classifier subset is selected as the optimum one (SUM
rule) from the independent v1.0 set (see Table VII, SUM rule).
This ensemble, which is trained on the v1.0 database, achieves
94.18% accuracy on the v2.0 database. Hence, it is still superior
to fusing all individual experts within v2.0 by 0.42 percentage
points and also improves the best single individual expert’s
performance by 5.87%. This finding clearly supports our claim
that judicious selection of classifiers for score fusion can be
quite beneficial.
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TABLE VII
SELECTED CLASSIFIER SUBSETS AND THEIR IDENTIFICATION PERFORMANCES (IN PERCENT)

FOR DIFFERENT FUSION METHODS ON THE FRGC V1.0 DATABASE

TABLE VIII
2 × 2 PROBABILITY COMPUTATION FOR TWO CLASSIFIERS

Ci AND Cj , WHERE N11 + N01 + N10 + N00 = 1

B. Correlation Analysis of Face Experts

The SFBS-based construction of the face ensembles has
shown that some of the base classifiers are redundant and that
their inclusion may lead to suboptimal identification rates. To
substantiate this finding, we consider the correlation of binary
decision outputs of the face experts [61], which is computed as
follows:

ρi,j =
N11N00−N10N01√

(N11+N10)(N01+N00)(N11+N01)(N10+N00)
(3)

where, for classifiers Ci and Cj , N values denote the probabil-
ities for the respective pair of correct/incorrect outputs and can
be calculated as in Table VIII.

Given the 16 experts in Table III, we have computed
120 pairwise correlation values, with significant correlations
between certain pairs of face experts. In order to visualize the
multidimensional relationships between face experts, we have
first obtained the dissimilarities between pairs of classifiers by
using di,j = 1− ρi,j . Here, di,j can be considered as a dis-
tance measure between classifier pairs. Then, we applied MDS
algorithm to construct a 2-D space �2 where the coordinates
denote the individual classifiers. The space of the two largest
eigenvectors suffices to reasonably reproduce the space of face
experts. Fig. 9(a) shows the reproduced face experts for the
FRGC v1.0 experiments in 2-D coordinate system as black dots.
In Fig. 9(a), the visually delineated face expert clusters (dashed
ellipses) are also depicted. There are five salient clusters, and
with few exceptions, each cluster matches one of the face
representation methods. For instance, curvature-, depth-image-,
point-cloud-, and texture-based face experts form their own
clusters. Fig. 9(b) shows the same analysis for the face experts
in the FRGC v2.0 experiments. Note that, now, nearly all of
the face experts employ subspace techniques in their feature

extraction process. Visual inspection of the clusters reveals the
same conclusion for the base experts in the FRGC v2.0 experi-
ments: Groups are formed according to the representation tech-
niques used and not according to the feature extraction methods
employed.

In Fig. 9(a), gray circles denote the selected face classi-
fiers for the SUM fusion rule (see Table VII, second row).
Examination of the selected face experts reveals that experts
must come from different clusters. Similarly, for the FRGC
v2.0 experiments, the best ensemble subset includes experts
from curvature-, depth-image-, point-cloud-, and texture-based
representations [Fig. 9(b)].

We can profit from this correlation map of experts to con-
struct an alternative expert subset, i.e., a fusion ensemble. This
method consists in handpicking one classifier from each cluster,
as in Fig. 9, in order to enforce diversity of opinions. The
heuristic is the greedy approach of choosing the best perform-
ing face expert in clusters. The upper part of Table IX shows the
performance of the five fusion rules applied to the handpicked
ensembles, namely, CURV-PD, TEX-GABOR, DI-DCT, and
PC-ICA for the FRGC v1.0 experiment—the E1. We exclude
the VOXEL-DFT method because its solo classification per-
formance is very low. Comparison of these results reveals the
advantage of getting guidance from clustering of experts. The
only drop in accuracy occurs for the PLUR method since voting
within an ensemble of small cardinality is known not to perform
well. The lower part of Table IX shows the identification
performances of selecting the best expert from each cluster for
the FRGC v2.0 experiment. The selected experts are the same as
the ones used in the FRGC v1.0 experiments. It is reconfirmed
that selecting the best experts from different clusters is not only
less costly but is also better in terms of performance.

We conclude then that the set of experts yielding the highest
score does not necessarily contain experts only with high indivi-
dual scores, but that experts in a consultation team should be
from different categories even if their individual scores are
lower.

C. Classifier Selection by Best-N Method

A second alternative method to construct the ensemble would
be to combine the best N face experts. However, since this
method does not exploit the diversity of decision takers, we
conjecture that it may not perform as well. In order to validate
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Fig. 9. Correlation analysis of the face experts. In both images, black dots denote the 2-D positions of the face experts calculated from the MDS analysis of
pairwise correlations. Gray circles denote the expert subset found from (a) the SUM rule for FRGC v1.0 experiment E1 and (b) the SUM rule for FRGC v2.0
experiments. In (a), large dashed ellipses denote visually salient clusters.

TABLE IX
IDENTIFICATION PERFORMANCES (IN PERCENT) WITH SELECTION

OF CLASSIFIER ENSEMBLES BY CLUSTERING

this hypothesis, we have combined the best N face experts,
where N ∈ {2, 3, . . . , 16}, with MOD-PLUR fusion rule in
FRGC v1.0 experiments. The fusion performance of the best
ensembles is shown in Fig. 10(a) (black dotted curve), whereas
the two lines correspond to the accuracies of the total ensemble
(the N = 16 case) and the SFBS ensemble, respectively. As
expected, the indiscriminate ensemble of the best ones performs
worse than the judiciously chosen SFBS subset case. Fig. 10(b)
shows the performance behavior of the best N approach for
the SUM rule in the FRGC v2.0 experiment. Although the
performance gradually improves by adding new base experts,
it is always suboptimal when compared to the SFBS-ensemble
performance.

In the 3-D face recognition literature, the fusion of only two
experts, one for the shape modality and one for the texture
modality [13], [26], [27], is a common method. For com-
pleteness, we also present the results of this restricted fusion
scheme. In Table X, we provide the results of combining best
texture- and shape-based experts for the FRGC v1.0 and v2.0
experiments. From these performance figures, one can see that
the combination of texture and shape experts has comparable
accuracy to that of fusing all 16 face experts but does not
perform as good as the best ensemble subset that employs
diverse representations.

D. Overall Comparison of Fusion Schemes and Classifier
Selection Methods

The bar chart in Fig. 11 shows the fusion results for the
v1.0 experiments, where four fusion schemes (SUM, PLUR,
HC, and MOD-PLUR) and four ensemble-construction algo-
rithms (Ens-All, Ens-SFBS, Ens-Cluster, and Ens-BestN) are
presented. The optimal ensemble formation is given by the
SFBS algorithm. The choices of SFBS indicate the importance
of diversity and complementariness in ensemble formation.
In fact, the cluster-guided method (Ens-Cluster) satisfies the
diversity conditions and hence performs better than fusing the
best N individual experts (see Ens-BestN in Fig. 11). These
findings are also proved on a bigger database (FRGC v2.0)
where SFBS-based ensemble construction algorithm selects
diverse experts and obtains the best identification accuracy.

In terms of fusion algorithms, the following conclusions can
be drawn according to the availability of sufficient training data.
If you have insufficient training data that lead to suboptimal
estimation of score ranges: 1) in good ensembles, the SUM rule
does not perform as well as the others; 2) if one has several
face experts, plurality voting can be a better alternative to the
SUM rule; 3) it is possible to improve plurality voting with
the aid of confidence weights; 4) if there are few experts, then
selecting the class having the HC (not the smallest score or
distance) can lead to better identification rate than plurality
voting. Otherwise, if you have enough training data to estimate
correct score ranges, then the use of fixed rules such as the SUM
or PRODUCT could be a better alternative.

Table XI illustrates the performances of different algorithms
in the literature, which use FRGC v2.0 for identification simu-
lations. In all of these systems, the performance of the proposed
approach is benchmarked via single-gallery experiments where
the earliest scans of each subject are placed into the gallery set.
However, the experimental setups are different with different
sizes of gallery and probe sets. In this respect, the experimental
protocol used by Chang et al. [23] is more challenging since
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Fig. 10. Identification performances of fusing best N classifiers: (a) MOD-PLUR rule for the FRGC v1.0 experiments and (b) SUM rule for the FRGC v2.0
experiment. The x-axis denotes the number of classifiers fused, whereas the y-axis denotes the identification accuracy. Black dotted curve denotes the rank-1
accuracy of the best N fusion method. The horizontal dashed line and the horizontal solid line denote the performances of the fused ensemble for 1) SFBS-based
face expert subset and 2) using all 16 face experts in the ensemble, respectively.

TABLE X
IDENTIFICATION PERFORMANCES (IN PERCENT) WITH FUSION OF

SHAPE- AND TEXTURE-BASED EXPERTS USING THE SUM RULE

Fig. 11. Overall comparison of 1) the fusion techniques and 2) ensemble-
construction methods. Ens-All: All 16 experts in the ensemble, Ens-SFBS:
Subset of face experts selected by the SFBS method, Ens-Cluster: Selection
of best experts from each cluster (see Fig. 9), and Ens-BestN: Selection of the
most accurate five face experts. Horizontal line denotes the best face expert’s
accuracy in the experiment E1.

they conducted recognition experiments on a larger database
spanning both FRGC v1.0 and v2.0 image sets. Furthermore,
their results are obtained via a fully automatic face recognition
system, whereas our system employs manual landmarking for
registration. Thus, the performance figures should be compared
with respect to the relative difficulty of each experimental setup.

IX. CONCLUSION

In this paper, we have analyzed the impact of face data
representation, feature selection, and fusion for 2-D/3-D face

recognition. We have designed a diverse set of 2-D/3-D face
recognizers that differ in the face representation and/or in the
discriminative features they extract from these representations.
Recall that one combination of face representation and feature
type is denoted as a “face expert.” We have demonstrated that
it is possible to improve the recognition performance with
a consultation session between these experts, where expert
decisions are fused.

We have conducted our experiments on the FRGC v1.0 and
v2.0 data sets. We have used the experimental configurations
used by the most recent studies. In the experiments on the
FRGC v1.0 data set, we have used all experimental configu-
rations Ei. However, in FRGC v2.0, we restricted our attention
to E1 experiments, where the gallery contains a single training
image per subject. In the experiments with FRGC v2.0, we
have used the FRGC v1.0 data set to learn feature subspaces
and selections for expert consultations. We have conducted
extensive experiments on the effectiveness of different fea-
tures, different representations, and different fusion rules. By
experimenting with different training-set sizes, we were able
to draw conclusions on the effect of training sets. The expert-
selection experiments led to an understanding on the effect of
combining diverse experts. Our insights and conclusions can be
summarized as follows.

1) Representation is more important when training set is
small. The acquired face data in 3-D can assume one of
the forms of point clouds, surface normals, depth images,
curvatures, or 3-D voxels. In 2-D, it assumes the form of
gray-level texture images. The depth image derived from
the original 3-D face is also treated as a 2-D image. In
experiments where the training-set size is very small, the
effect of representation type dominates: Curvature-based
experts always scored the best, and 2-D textures always
remained inferior.

2) The effect of matching feature dominates when training-
set size gets larger. The second tier of the analysis is the
feature extraction stage. For 3-D face data, we have used
two varieties of features, namely, the subspace features
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TABLE XI
COMPARISON OF RANK-1 IDENTIFICATION RATES IN THE LITERATURE FOR SINGLE-GALLERY EXPERIMENTS ON THE

FRGC V2.0 DATABASE (NOTE THAT THE EXPERIMENTAL SETUP IN EACH STUDY IS DIFFERENT)

(DFT, DCT, NMF, and ICA) and the spatial geometric
features (point cloud, shape index, surface normals, and
principal curvatures). For 2-D data, we have limited our-
selves to Gabor texture features. Subspace-based methods
such as application of ICA and NMF on point clouds gave
superior results when a large training set is available. One
important conclusion is that all 3-D face representation
types (point clouds, surface normals, depth images, cur-
vature images, and 3-D voxels) have similar identifica-
tion performances provided that its matching feature is
selected and that the gallery contains at least two data
items per subject. Instances of a matching feature are
the following: DCT or DFT features for depth images,
shape index for curvature representation, and NMF for
point cloud. In our experiments, the only exception to
this rule was with 2-D textures: the solo performance
of 2-D textures was inferior for any matching feature.
However, they were useful as the assisting features in a
fusion setting.

3) Fusion of experts is beneficial, but normalization is
critical. The availability of multiple features and repre-
sentation allows performance improvement via fusion.
However, expert scores can be very diverse, and score
normalization may not work when training-set size is
small. We solved this disparity problem by using range
normalization and a differential measure. Another con-
clusion was that the simple yet effective plurality voting
can be improved by taking into consideration the expert
confidences.

4) Fuse only the most diverse. We came to the conclusion
that the face experts taking role in the decision session
should have origins from different face representations
and not from different features of the same representation.
Interestingly enough, the experts cluster in a 2-D map
after MDS according to their underlying representation
data. The fusion of intelligently selected experts helps
most in the challenging single training case, where ad-
ditional 1.75 and 7.14 points of accuracy are gained for
FRGC v1.0 and v2.0, respectively. It was shown that
inviting everybody is not necessarily a good idea and that
an expert-selection algorithm, much in the same way a
feature selection, works better.

As future work, the optimal partitioning of the face in
patches, with possibly smaller patches near the eyes and larger

patches on the front or cheeks, must be explored. Each such
patch will be represented by its DFT/DCT features locally and
then concatenated into a face feature vector. NMF [63] and ICA
can similarly benefit from patch-based analysis. In addition, we
have observed that the depth field suffers from the unnatural
acceleration at the border when cheeks meet background
abyss. The effect of this artifact can be mitigated with some
windowing function. We have considered in this paper only
score-, rank-, and decision-level fusion. The merit, if any, of
the feature-level fusion should be analyzed. In fact, it would
be conceivable to design 3-D face recognition schemes that
exploit feature- and decision-level fusion in some optimum
combination.
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[7] B. Gökberk, M. O. İrfanoğlu, and L. Akarun, “3D shape-based face
representation and facial feature extraction for face recognition,” Image
Vis. Comput., vol. 24, no. 8, pp. 857–869, 2006.
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University. Her major field of study is telecommuni-
cations and signal processing. Her research interests
include computer vision, pattern recognition, 3-D

object recognition, and biometrics.
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Boğaziçi University, Istanbul, Turkey, in 1984 and
1986, respectively, and the Ph.D. degree from the
Polytechnic University, New York, in 1992.

Since 1993, she has been a Faculty Member with
the Department of Computer Engineering, Boğaziçi
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Istanbul. He has held visiting positions at the Univer-
sity of Ottawa, Ottawa, ON, Canada, the Technical
University of Delft, Delft, The Netherlands, and
the Ecole Nationale Supérieure des Télécommuni-
cations, Paris, France. His research interests are in

the areas of digital signal processing, image and video compression, biometry,
cognition, and multimedia systems.

Dr. Sankur was the Chairman of the International Conference on Telecom-
munications (ICT’96) and the European Conference on Signal Processing
(EUSIPCO’05), as well as the Technical Chairman of the International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP’00).


