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Abstract

The problem of image segmentation using constraint satisfaction neural networks (CSNN) has been considered. Several variations of the
CSNN theme have been advanced to improve its performance or to explore new structures. These new segmentation algorithms are based on
interplay of additional constraints, of varying the organization of the network or modifying the relaxation scheme. The proposed schemes are
tested comparatively on a bank of test images as well as real world images. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Image segmentation, which aims to divide a given image
into homogeneous and meaningful regions, is the crucial
step in image processing since it directly affects the per-
formance of subsequent operations such as image analysis,
measurement, and classification. Despite the multitude of
image segmentation methods proposed in the last three
decades [1], the quest for new more effective methods
continues. This is partly due to the necessity to handle as
broad a category of images as possible, partly to meet the
real-time demands in practical applications such as digital
video.

We address in the paper constrained relaxation tech-
niques coupled with parallel processing potential of neural
networks for segmentation of images. In this context, Arti-
ficial neural networks (ANN) forms an effective tool to
realize parallelism and real-time implementation [2-5].

There are several applications of ANNs in the image
segmentation literature. One of the early applications of
the use of ANNs in medical image segmentation was by
Ozkan et al., who used the backpropagation learning to
segment MR images [6]. Uchiyama and Arbib used compe-
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titive learning to cluster colors in images [7]. Littmann and
Ritter developed an ANN, named local linear maps, for
adaptive color segmentation and compared it with statistical
methods [8]. A modular neural network has been used by
Verikas et al. for image segmentation [9]. Shen and Ip used
Hopfield type ANN by taking into account active surface
optimization for segmentation [10].

Bayesian image segmentation has also profited from both
the ANN’s inherent parallelism and by relaxation techni-
ques. Recall that Bayesian image segmentation constructs
a mathematical model of the image and carries out the
segmentation by maximizing the posterior probability
according to this model. The most popular model is the
Markov random field (MRF), which can be cast into an
energy minimization formula. The minimization of the
energy functional constitutes, in fact, the maximum a
posteriori (MAP) segmentation of the image [11,12]. One
roadblock in the MAP scheme is its computational complex-
ity. However, the fact that the global energy functional can
be decomposed into local interactions using the MRF model
calls for the exploitation of the ANN parallelism. In this area
Manjunath et al., proposed a Hopfield-type ANN that imple-
ments a deterministic relaxation for texture segmentation. In
their work, to express the MAP functional, they used image
intensity and texture label process based on Gauss Markov
random field (GMREF) [13]. Another Hopfield type approach
to implement MAP minimization is the deterministic relaxa-
tion neural network (DRNN) proposed by Raghu et al.
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Fig. 1. Topology of the CSNN. Each layer represents a segment. The (i, j)th
neuron in each layer holds the probability that (i, j)th pixel belongs to the
segment represented by the layer.

[14,15]. The total energy is mapped in their work to a
Hopfield model and a deterministic relaxation scheme is
applied to obtain the MAP segmentation. Chen and Chen
proposed a modified cellular neural network (CNN) archi-
tecture for MAP estimation task [16]. They combined the
adaptive K-means clustering algorithm of Pappas [17], and
the GMRF model. The MAP estimation problem has been
carried out by using a combined method based on adaptive
K-means algorithm and iterated conditional modes (ICM).

An interesting ANN-based approach to image segmenta-
tion is given by constraint satisfaction neural network
(CSNN) as proposed by Lin et al. [18]. They cast image
segmentation problem as a constraint satisfaction problem
(CSP) and develop an ANN to solve the CSP. The method
carries out the segmentation by initializing the neurons via
some clustering scheme and later by running a relaxation on
them, which takes into account the spatial constraints
between labels. Although the CSNN is an attractive tool
for image segmentation because of its simple network
architecture and its flexible constraint scheme, it does
have some of its own drawbacks. For example, the CSNN
is observed to have a slow convergence rate, and to cause
over-smoothing along segment boundaries.

In this paper, we introduce variations on the theme of
CSNN-based segmentation. These variations aim to over-
come the shortcomings of its segmentation performance
and to advance new implementations of the CSNN. The
proposed CSNN schemes can be classified into two
categories:

e Improver algorithms: The goals in these algorithmic vari-
eties are to accelerate the convergence and to improve the

segmentation performance, especially on the segment
boundaries. For example, while the basic structure of
the CSNN is preserved some edge constraints can be
imposed resulting in the Boundary CSNN algorithm
(B-CSNN in Section 3.1) or a new neuron-scanning
scheme is used as in the Multiscan CSNN algorithm
(MS-CSNN in Section 3.2).

e New structure algorithms: In this category, the structure
of the CSNN has been modified to implement the CSP for
new applications. In Section 4.1, a pyramidal neural
network is discussed, bringing in the capability to pro-
vide segmentation results at different scales. A CSNN
structure, modified to incorporate data dependency
term, is a design to solve the MRF estimation problem.
(MRF-CSNN in Section 4.2).

The organization of the paper is as follows. In Section 2,
the CSNN algorithm is briefly introduced and shortcomings
of the algorithm is presented. In Section 3, two algorithms
that improve CSNN in performance and speed attributes are
introduced. The algorithms imposing new constraints and
structures to CSNN are presented in Section 4. In Section 5,
the claimed improvements are shown in terms of better
convergence, segments that are more realistic and higher
objective scores. Finally, the conclusions of the paper are
given in Section 6.

2. The constraint satisfaction neural network
2.1. Review of the CSNN Structure

Image segmentation based on CSNN, as in Lin et al. [18],
uses a network topology, as shown in Fig. 1, where links
between nodes simply correspond to interactions between
pixels. Furthermore, each layer represents one of the pos-
sible segments. Assuming for simplicity an N XN size
image, each layer contains that many neurons, and neurons
with the same coordinates in each layer hold the probability
that the pixel belongs to the segment represented by the
layer index. At the end of the relaxation, one would ideally
expect the neuron weights to all converge to zero, except for
the neuron of the winning layer (segment), which should
converge to one. Connections between a pixel and its neigh-
bors are shown in Fig. 2, where 8-neighborhood connectiv-
ity is shown, although the neighborhood connectivity order
may be varied depending on application. The weights of
these connections, which are assigned in a heuristic manner
in Ref. [18], represent the constraints for a given topology.
These weights are determined so that a neuron excites other
neurons in the neighborhood representing the same label,
and inhibits the ones that represent significantly distant
labels.

For the relaxation to start the neurons must be initialized
with labels resulting, for example, from some clustering
process. In Ref. [18], a Kohonen self-organizing network



F. Kurugollu et al. / Image and Vision Computing 20 (2002) 483-497 485

Ug-1)5+1)1
)

Fig. 2. Connections between a neuron O,-jk, i,j=1...N, k=1...M, and its
neighbors. The weights of these connections are interpreted as constraints.

was used to produce the initial labels (i.e. probabilities of
belonging to a segment). Accordingly, a larger probability
value is given to the neuron of the winner class and lower
probabilities are assigned to other classes. These probability
values at any site should add up at a pixel site to 1.

After the initialization, CSNN is made to converge to a
segmentation state, which satisfies all constraints through a
parallel and iterative process. The label probabilities grow
or diminish in a winner-take-all style because of contention
between segments. The total squared difference of neuron
outputs, called also the energy, E, between successive itera-
tion steps is taken as the stopping rule as in Eq. (1), where
O§jk denotes the output value of the neuron in the spatial
position i,j and in the kth segmentation layer at the iteration
step t. As the CSNN converges, the neuron in the ‘correct’
layer approaches to 1 while the neurons in the other layers

12k—» AOijk

I=k—» Aoijk =

=-01

are reduced to 0. Finally, each pixel is assigned the class
label of its winner layer.
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The update scheme of a neuron is shown in Fig. 3. The
output of the neuron, O, is determined both from its
previous state and from the neighbor contributions, Hj.
Neighbor contributions are summed from the outputs of
the neighbor neurons through connection weights that repre-
sent the spatial constraints. The contribution of the neigh-
borhood for Oy is given as follows:

ljk - Z sz/',qr,k,lOi]rl (2)

(g,r,\DEN;;

where the state of the (g,r)th neuron in layer [, Oy, is
reflected to the (i, 7)th neuron in layer k, Oy, via a weighting
factor, W;; ;.- The non-linear updating ‘the winner-take-
all’ rule is as follows:

Pos(Oﬁjk + Aijk)

o= — 3)

ZPOS( i T AOUI)

=1

where

o 1fHk —max{H,ﬂ}
AOUk = and
—& for all other /

{x
Pos(x) =

ifx=0

0 otherwise

and 0, the updating step size, is a small positive number,
typically chosen as 0.1. The denominator term in Eq. (3) is
the normalization factor which keeps the total output of
the neuron residing in a specific location less than 1. The

Limitation
&
Normalization

Fig. 3. Structure and update scheme of a neuron in CSNN.
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Fig. 4. The results of the CSNN segmentation at specific iteration steps. Test image consists of four quadrants with mean RGB value [0,0,0] [255,0,0] [0,255,0]
[0,0,255] and noise with variance 64. To illustrate decision problem in the segment boundaries the region showed as the yellow square in the test image is used.
The enlarged regions obtained from the segmentation results for the specific iteration steps are depicted.

updating rule, given in Eq. (3), is based on two principles:

1. If Hy is the maximum one among all contributions at
location (i, ), a positive contribution is added to increase
the support for the O neuron. This in turn causes an
increase in the output of Oy.

2. For all other non-winning Hy;,,, m # k, the outputs of the
Ojjth neuron, m = 1,...,M, m # k, are decremented.

Let us denote the limiting value of the neuron function as
lim,_, OEJII = Oy Using these likelihood values of the
(i,j)th pixel to belong to the kth segment the final assign-
ment is made as pixel label I; = arg max; Oy;. Further
details of the method used in determination of the weights
and the mathematical construction of the CSNN can be
found in Ref. [18]. The demonstration that CSNN actually
performs probabilistic relaxation is presented in Appendix

A.

2.2. Characteristics and shortcomings of CSNN

CSNN is a tool for image segmentation that combines the
clustering operation in measurement space with the relaxa-
tion method in spatial domain. The first advantage of CSNN
based segmentation is that the neural network structure
provides an efficient and simple way to solve the CSP.

Energy vs. Step

The relaxation rate can be easily controlled by means of
varying the connection weights that correspond to con-
straints or compatibility coefficients and neighborhood
size around each pixel site. The behavior of the network,
therefore, can be adjusted according to applications with-
out any changes in the network structure. For example,
smoother segments could be obtained by increasing the
neighborhood size. Secondly, the CSNN solution to seg-
mentation by relaxation enables parallel and real-time
implementation [19].

One observed shortcoming of CSNN is that it has a long
convergence time. Furthermore, the energy, given in Eq.
(1), does not decrease below a certain value. This problem
arises from the pixels on the segment boundaries, as the
relaxation algorithm hesitates in the assignment of these
pixels to one or the other segment, causing futile iterations.
The segmentation results obtained from several iteration
steps are shown in Fig. 4. While the CSNN-based relaxation
works well for the pixels interior to the segment, it is not as
efficient on the segment boundaries, as shown in Fig. 4. This
can be seen more clearly in Fig. 5, where the energy of the
non-boundary pixels is plotted separately from that of the
boundary pixels. One can notice that while the within-
segment energy goes rapidly to zero, the boundary energy
remains at a standstill.

A second shortcoming, inherent in relaxation algorithms,
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Fig. 5. Energy (E) vs. relaxation steps for a test image. Within-segment energy rapidly converges to zero whereas the boundary energy (the pixels that reside in
the area covered by white lines in the test image in Fig. 4) remains constant after 35th step.
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Fig. 6. Alteration of connection weights by using the edge map of the input
image. The black dots indicate the edge pixels. Assigning 0 weight to their
connection weights precludes the contradictory contributions across a
boundary.

is that the CSNN algorithm tends to cause over-smoothing
and under-segmentation results, as the big segments tend to
capture small segments. This effect is shown in Figs. 14 and
15 where the details of the window segment on the ‘House’
image are absorbed by the neighborhood segments. Modi-
fied CSNN segmentation algorithms presented in the sequel
address these shortcomings.

3. Schemes to improve CSNN
3.1. CSNN with boundary constraints: B-CSNN

Many region growing-based segmentation methods can
be improved with the aid of edge information [20-23]. For
example, Worth and Kennedy have proposed a boundary
contour system to impose edge strength to the neuron
connections by reducing or shutting off the weights of the
connection [24].

It was pointed out that the convergence of CSNN was
handicapped by the uncertainties at boundaries. Image
edge information, incorporated in the connection weights
of neurons, can be instrumental to improve the segmentation
performance [25]. As depicted in Fig. 6 the neuron connec-
tions across the boundaries are severed by simply setting
them to 0. So contributions of the pixels across a boundary,
resulting in contradictory information, are precluded. In our
work, we used Canny edge detector to guide the CSNN
segmentation [26].

With the additional edge constraints imposed onto seg-
mentation, both the numbers of iterations and the conver-
gence error in the B-CSNN are reduced significantly as
shown later in Fig. 10. In addition the absorption of small
segments by their larger neighbors are prevented in the B-
CSNN algorithm as shown in the details of the examples in
Figs. 14 and 15.

3.2. Multiscanning segmentation with CSNN: MS-CSNN

In this approach, the structure and dynamics of the neural
network is the same as in the CSNN, but the scanning
pattern, hence the updating scheme, is changed. One
commences with more sparsely sampled pixels but possess-
ing larger neighborhoods, which leads to labels that are
more reliable. In each subsequent scanning cycle, the

Fig. 7. Scan scheme in MS-CSNN where darker pixels indicate the visited
ones. In the first stage, (top figure) the visited pixels are sparser but each is
equipped with a larger neighborhood. In the following stages, (middle and
bottom figures) pixels closer are visited albeit with smaller neighborhoods.

remaining pixels (not yet updated) are visited in an increas-
ingly denser pattern but with smaller neighborhoods as
shown in Fig. 7. Previously visited pixels are left intact
but they contribute to the updating of the newly visited
pixels in their neighborhood. As each scanned pattern
converges, one moves on to the next (denser) scanning
pattern [27].

Since the outputs of the visited pixels in the first stages
cannot be changed in the lower stages, the futile iterations
are avoided in this algorithm. Therefore, this algorithm
speeds up the process as seen in Fig. 10. It slightly improves
the results according to the CSNN, as depicted in Figs. 14
and 15.

4. Schemes for new CSNN applications
4.1. Pyramidal CSNN segmentation: P-CSNN

Pyramidal CSNN (P-CSNN) aims to provide segmenta-
tion results at different scales. Such a tool is useful in appli-
cations requiring segmentation of the scene at different
scales, typical examples being astronomical and industrial
inspection images.

In the P-CSNN method, each resolution level of the pyra-
mid consists of a label image at a different resolution level.
Notice that one obtains not an image pyramid but a label
pyramid. In this approach [28], a parent pixel in the upper
level is related with its 16 child pixels in the lower level,
while a child pixel in the lower level has 4 parent pixels in
the upper level (Fig. 8). A voting among the child pixels is
performed and the maximum encountered segment label of
the child pixels is assigned to the parent pixel. Obviously,
the label field, with the dimensions of the given image,
constitutes the base of the pyramid (Oth level). This label
map is used to generate the 1st level map, the 1st level map
bears the 2nd level label map, and so on. Each level
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Fig. 8. (a) Structure of P-CSNN. Each level represents a CSNN, which consists of number of segments layers. (b) Connections between levels. These
connection weights can be adjusted to obtain more smoothed or more detailed segmentation result. If W denotes the in-layer connection weights, in this figure
child—father (from-low-to-high) weights were taken as W/4 while father—child (from-high-to-low) weights were taken 4W. A numerical example can be found

in Table 1.

possesses its own CSNN structure, based on interconnec-
tions between pixels as well as cross-connections between
the one higher and one lower resolution levels [29] as shown
in Fig. 8. These CSNNs differ from that described in Figs.
1-3 as they possess additional connections across resolution
levels, and each one of them converges separately

After initialization, the neural network searches a seg-
mentation result, which must satisfy all the constraints in
all levels of the pyramid. To represent these constraints,
each neuron is synapsing with (a) 16 child sites in the
lower resolution level, (b) 4 parent sites in the higher reso-
lution level, and (c) 8 neighboring sites in the same resolu-
tion level. When the algorithm has converged to a solution,
the resulting segmentation is simply the state of the base
level of the pyramid.

One can adjust the connection weights in Fig. 8 between
the resolution levels to steer CSNN output to smoother
or more detailed segmentation maps. For example, if
larger connection weights are attributed from-low-to-high

Table 1

synapses smoother segments will be obtained, as lower reso-
lution labels will have more roles. On the contrary, if larger
connection weights are chosen from-high-to-low synapses,
segments that are more detailed will be generated. A
numerical example of this weight-assigning scheme is
given in Table 1. In this example, the neighborhood para-
meter, p, and the number of segment, M, are chosen as 8 and
3, respectively. The weights, as determined by the ad hoc
rule of Lin et al. [18], are given in Eq. (4).

1 2k — |
Wij,qr,k,l = I; (1 - T) (€]

where p and M denote neighborhood size and number of
segments, respectively.

The proposed P-CSNN method gives the user the flexi-
bility to tune the algorithm for coarser or finer segmentation.
A case in point is astronomical images, as shown in Fig. 16,
where low-resolution segmentation is used to study the

Assignment of connection weights. To obtain a fine segmentation, higher connection weights are assigned to the from-high-to-low synapses as compared to the

from-low-to-high ones

From-high-to-low weights Wy | = 4W In-layer weights W

From-low-to-high weights W} _y = W/4

k k k
0 1 2 0 1 2 0 1 2
0 172 1/6 —1/6 0 178 1/24 —1/24 0 1/32 1/96 —1/96
1 1 1/6 172 1/6 1 1 124 1/8 1/24 1 1 1/96 1/32 1/96
2 —1/6 1/6 12 2 —1/24 1/24 1/8 2 —1/96 1/96 1732
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morphology of the Nebula, and high-resolution segmenta-
tion to study details of its nucleus.

4.2. Markov random field segmentation via CSNN

The principle of MRF based segmentation is the maximi-
zation of the posterior estimate (MAP), that is finding the
most probable label field satisfying certain spatial constraints
given the observation of a degraded image [11,12,30]. This
a posterior probability function, p(I|y), is expressed, using
Bayes theorem, in terms of a priori quantities, i.e.:

p(label field/noisy image)

__ p(noisy imagellabel field)p(label field)
N p(noisy image)

®)

where p(y|I) is the conditional probability of the observed
image given a segmentation map with a priori label prob-
ability p(J). The literature abounds with algorithms for this
MAP estimation. For example, Geman and Geman used
stochastic relaxation scheme for MAP estimation [30].
Hansen and Elliott used a suboptimal formulation of MAP
and a dynamic programming approach, while Daily solved
the problem using regularization theory [31,32]. The
other stochastic optimization techniques such as simulated
annealing, iterated conditional modes, maximizer of poster-
ior marginals have also been used to estimate the MAP
segmentation [12]. Among neural network-based solutions,
one can mention the CNN alternative [16], the Hopfield type
neural network [14] and the probabilistic neural network
[33] solutions. Raghu et al., used a deterministic relaxation
neural network (DRNN) on GMRF models [14,15]. Our
CSNN-based MRF solution has been inspired from this
DRNN, hence we will briefly review the basics of DRNN.

In the DRNN model, the energy to be minimized is
derived from three processes: feature formation process,
partition process and competition process. First, the feature
formation process describes the probability of assigning a
feature value to a pixel using the model parameters of each
segment for that pixel. This probability is described as
P(G; = g,-j|L,»j = k) where Gj is the realization of a feature
vector at pixel location (i, 5), and L; its corresponding label.
Gabor filter-based features are used to model the texture and
a Gaussian distribution is assumed for the feature formation
process. This process expresses the data dependency term of
the energy function. Second, the partition process defines
the probability of the label of a pixel given the labels of the
pixels in a predefined neighborhood of that pixel. This prob-
ability is defined as P(L; = k| L,,, qgr € N;j) where Nj;
denotes neighborhood of the pixel located in (i,j). This
process describes the label continuity term of the energy
function. The third process, the competition process, is
imposed to prevent assigning multiple labels to any pixel.
It is defined by the conditional probability of assigning a
new label to an already labeled pixel. It is described as

P(L; = k|iij) where I:ij denotes the set of labels that may
be assigned to that pixel.

In the light of these processes, they define a posterior
probability which describes the labeling (L;) of the pixel
given the feature measurement at the pixel (Gy), the labels
of the neighborhood pixels and the possible labels
previously assigned to the pixel, as follows:

P(L; = K|G;,L,,, gr € Ny, Lj). Using this posterior
probability, the Bayes theorem, MRF energy descriptions
for the probabilities and matching resulting Gibbs energy
with the energy of the Hopfield ANN, Raghu et al., arrived
at a DRNN scheme as given in Eq. (6). The details of the

derivation steps can be found in Refs. [14,15].

[A{Ejk = Z Wij,qr,k,légrl - Dt(Gij’ Mz a-lg,t) (6)
(g.r.DEN;

where Djy = lg;; — m /207 ) + (12)m[@mY o 1w,
and o}, are the model parameters that are defined as the
mean value and the variance of the kth class or segment at
the rth iteration step.

The neurons in the DRNN update their outputs according
to their inputs in Eq. (6) as follows:

I, ifH>0
0,y=10, ifA;<0 )

O ifHy =0
while the initialization of the neurons is given in Eq. (8).

Ol = { ! @®)

0, otherwise

One can notice that the feedback and update scheme of
the DRNN is quite similar to that of CSNN. One difference
between the two algorithms is that the DRNN has a data
dependency term in its energy function in addition to the
label consistency term. The second difference is that DRNN
can be considered a crisp version of the CSNN. In fact, in
the CSNN algorithm presented earlier, the initialization and
the updating rules reflect the probability of pixels to the
segments, while DRNN has hard decisions. Thus in
CSNN, in the iteration steps, the label value of a pixel
changes gradually, while in the DRNN scheme, the assign-
ments are hard, in that, the neuron of the winner segment
takes value 1, and all the others take O value.

It was then conjectured that introducing a data depen-
dency term to CSNN would prevent over-smoothing effect
and its futile iterations around boundaries [34]. In addition
the probabilistic relaxation of CSNN should allow for better
utilization of data and neighborhood information as com-
pared to DRNN where labels change by 1-0 jumps. There-
fore, in the new MRF formulation of CSNN the input to a
neuron becomes:

Hyy = Hjy — D(M‘j, Mo 0'1?,;) )
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Fig. 9. Update scheme of the MRF-CSNN. Each neuron receives a signal from data dependency process as well as neighborhood contribution process.

where D(y,-j-,,uk,,,o,i,) is as in Eq. (6). In our study the
feature vector, y;, consisted of the RGB components of
the ijth pixel, though the formulation allows for any feature.
The new neuron update scheme is the modified version of
the one in Fig. 3 and it is depicted in Fig. 9.

The new update mechanism of the MRF-CSNN needs to
estimate the segment parameters, w and o at each iteration.
To this effect, first the winner neuron for each pixel,
possessing the largest likelihood value, is found. Then
using the map of the winning neurons, the parameters are
estimated as follows:

1
W=7 D ¥y (10)
|Sk| i jES,
2 _ 1
of =7 > lyy— ml (11)
|Sk| i jES,

where |S;| denotes cardinality of the kth segment.

The performance of the MRF-CSNN is superior not only
in convergence rate manner but also in segmentation result
manner. The data dependency term helps to corroborate the
correct segmentation decisions and prevent the algorithm
from the futile iterations. The convergence rate of the

MREF-CSNN is much better than the other algorithms as
seen in Fig. 10. The performance on real world images is
also better as shown in Fig. 14.

5. Results

In this chapter, the performance of the proposed CSNN
varieties will be tested in three aspects: Comparison of their
convergence rates, quantitative scores obtained from
synthetic test images, and qualitative judgment of some
real world images. We have excluded P-CSNN from the
comparisons because of its application, hence multiresolu-
tion weight settings is domain-dependent and/or subjective.

5.1. Performance in convergence rates

The convergence rates of all the algorithms are shown in
Fig. 10. It can be observed that, while the convergence of
the CSNN remains at a standstill, for example after 30th
iteration step, those of the B-CSNN, MRF-CSNN and
MS-CSNN keep on improving. The improvement in B-
CSNN is obviously due to the guidelines provided by the
edge map; hence, uncertain labels around the edges get
more firm decisions. The nature of convergence rate of

Energy vs. Step

e CSNN

= B-CShN

* WS-CSNN
< P-CSNN

#* MRF-CSNN

Step

Fig. 10. The convergence error (Energy) with respect to the number of iterations of all the four algorithms for a 256256 image.
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@nr=0

(b)A=0.012
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Fig. 11. Illustration of a ground-truthed test image used in the experiments. Gaussian colored synthetic test images with 22 regions and 5 segments. (a) Base
image with five randomly selected colors from palette. (b) Image with the same mean colors as in (a) but with colors spread with o = 17, 0 = 11, o = 15.
(c) Image with the same mean colors as in (a) and but with colors spread with oy = 31, oG = 34, og = 37. The associated classification difficulty parameter,

A, is given in the image captions.

the MS-CSNN is interesting, in that it has saccadic
upswings as a resolution level is switched, since the pixels
that have not updated yet start then being considered. The
MS-CSNN algorithm converges overall more rapidly and to
lower final value.

MRF-CSNN yields the best convergence rate. The energy
falls off much more quickly. This is due to the inclusion of
a data dependency term, so that the update of a pixel’s
likelihood to belong to a segment is affected not only by
the neighboring levels, but also by the degree to which a
pixel’s feature fits into the feature cluster of that segment.
Thus, much futile iteration is avoided in this algorithm, so
that it converges more rapidly.

5.2. Quantitative results

To be able to compare segmentation algorithms in
general and CSNN-based algorithms in particular, on an
objective and quantitative basis, a test image generation
procedure is developed [27] based on an idea from Stuller
[36]. The procedure generates ground-truthed images with
sufficient statistical richness. Briefly, test images consist of
the superposition of circles, with random centers and radii,
and random occlusions resulting in arbitrarily complex
boundary patterns, as shown in Fig. 11. Furthermore each
circle was stochastically painted, in other words, for each
segment a Gaussian color palette was generated with judi-
ciously selected RGB mean values and randomly selected
standard deviations [0, 0, og]. By varying the spread of
the color clusters around the segment mean (centroidal
color) one can control the ratio A of the between-class
variance to the within-class variance. This ratio can be inter-
preted as a measure of classification difficulty. Two hundred
test images were generated with different seed numbers. In
these experiments the number of classes varied from two to
six, and the standard deviation of the ‘Gaussian clusters’ in

the color cube varied in the 10—40 range, for each of the
RGB components [oRr, 0g, og]. For example the image
shown in Fig. 11 has 22 regions but 5 classes; each class
was characterized by one of the 5 mean RGB vectors and
color spread with oy = 31, og = 34, o = 37.

For performance evaluation, discrepancy-based criteria
are used. The first criterion is the misclassification error
(CE), originally proposed by Yasnoff et al. [37]. For N
objects in the scene the expression becomes

>
Cix = C
CE® = 0.5| = + = (12)

N N N
> Cu > > Ci—> Cu
i=1 ' j

where C; is the ijth element of the confusion matrix, that is,
the number of pixels that are assigned to object i, while it
belonged to the jth object. To better reflect any deformation
in the shape of the objects a second criterion is invoked. The
boundary function (BF) metric is based on the turning angle
function of the objects [35,38]. The rationale was that the
CE criterion did not sufficiently reflect the deformation of
the objects. The expression for BF for the kth object was:

P
> |0kes) — Okcs)
s=1

BF' = o (13)

where P is the perimeter of an object, and Og(s), Os(s) are
the turning angle functions of the reference and test images.
Thus, these two metrics are complementary to each other.
These two segmentation error penalties are each normalized
to the range [0,1]. The performance of the whole image,
called performance metric (PM), is the average of the CE
and BF scores over all objects in the scene, that is, PM =
0.5(CE + BF)



492 F. Kurugollu et al. / Image and Vision Computing 20 (2002) 483-497

450+

420

4001

350

300

250

200+

150
1001///

e

501

MRF-CSNN

MS-CSNN

B-CSNN

CSNN

Fig. 12. Rank sums of the four segmentation algorithms tested over 200 images.

The performance of the proposed variations on the
CSNN-based segmentation (namely, B-CSNN, MS-CSNN,
MRF-CSNN) has been compared using 200 test images.
Accordingly, the performance of the B-CSNN was found
to be better than that of the CSNN for 137 test images out
of 200 images, that is in 68% of the cases. Obviously the
higher the edge content of an image, the more B-CSNN
algorithm can show its advantage. The performance of the
MS-CSNN has been found as 72%, that is, the MS-CSNN is
better than the CSNN for 144 images out of 200 test images.
Finally, the performance of the MRF-CSNN is the best
among the others. It has produced results that are better

than the CSNN for 161 images out of 200 test images,
hence with a 80% superiority. Another way of showing
this comparison is by plotting their rank scores. For each
test image, the PM values of the methods are sorted, such
that the best method has the highest rank (e.g. rank 0), while
the method with the largest PM score has the lowest rank
(rank 3). Thus, the method that has the smallest rank sum
over all test images is considered the best one over all
possible test images. The rank sums of the four methods
are shown in Fig. 12. It is found that the MRF-CSNN has
the lowest (best) rank score while the CSNN has the worst
(highest) one.

A PM
0.2 —
0.148
0.138
0.117
0.111
0.094
0.080
0.074 0.077
CSNN
0.049 0.044 0.050
B-CSNN  MS-CSNN
0.016
MRF-CSNN
0.0—]
>

Fig. 13. Box-plots of the PM scores of the segmentation algorithms. Scores obtained from the 200 test images where the number of segments vary from 2 to 6

and where four color-spread categories (o, 0, o values) are used.
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Fig. 14. Segmentation results of the CSNN based methods. The numbers of segments used in the methods are given under the original image.

Box plots offer an alternative way to compare the
location and statistical spread of the performance scores.
In Fig. 13, we have plotted the upper and lower 25%
percentiles of the PM scores around the median value.
The ranking in the box scores confirms the earlier
observations. One can note again the distinct superior-
ity of the MRF-CSNN vis-a-vis all the other CSNN
algorithms.

5.3. Qualitative results

In this section, the real world image performances of all
algorithms are presented. First, the number of segments
must be furnished as a priori information to apply the algo-
rithms to the real world images. Determining the number of
segments from a given image is, in fact, a requirement in
most other segmentation schemes. Often this problem is
heuristically solved by means of a cluster validity proce-
dure. Among several cluster validity algorithms, a modified
version of the AIC (Akaike Information Criterion) criterion,
proposed by Zhang and Modestino [39], which is based on a
model fitting approach has been chosen [35].

Results obtained from real world images by using CSNN,
B-CSNN, MS-CSNN and MRF-CSNN methods are shown
in Fig. 14. It can be noticed that segmentation boundary
noise and absorption of the small segments by their larger
neighbors are avoided in the B-CSNN and the MRF-CSNN
algorithms. The MS-CSNN algorithm, however, improves

only slightly the aforementioned problems. This is in
contrast to CSNN that produces under-segmentation results
as small segments are captured by the big ones. Several test
cases in Fig. 15 illustrate the global and the detail perfor-
mance of the segmentation.

Finally, P-CSNN behavior is illustrated by an application
to an astronomical image as shown in Fig. 16. This image,
obtained from the NASA web page of Astronomy Picture of
the Day, is of M57, Ring Nebula. It is actually a barrel-
shaped cloud of gas shrugged off by a dying central star.
This image has been produced from Hubble Space Tele-
scope observations using natural appearing colors to indi-
cate the temperature of the stellar gas shroud. Hot blue gas
near the energizing central star gives way to progressively
cooler green and yellow gas at greater distance with the
coolest red gas along the outer boundary. Dark, elongated
can also be seen near the nebula’s edge.

To extract the whole structure of the nebula a coarse
segmentation scheme can be used. If one needs to segment
each gas shroud, a fine segmentation scheme should be used.
In this example, the fine segmentation result has been
obtained by choosing high connection weights that are
attributed to low-to-high level synapses whereas a high
connection weights for high-to-low level synapses have
been assigned to obtain the coarse segmentation result.

! http://antwrp.gsfc.nasa.gov/apod/ap010729.html.
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Fig. 15. Details of the segmentation results.

6. Conclusions

In this study, various innovations of the CSNN segmenta-
tion algorithm have been described and tested. The new
algorithms are based on the introduction of new constraints
and/or modification of the relaxation scheme.

The pyramidal version of the CSNN relaxation gives a
handle to the user to adjust the desired local detail or global
morphology of the segmentation. If edge information is
available or if the segmentation accuracy along the bound-
aries is paramount, then the edge-guided B-CSNN algo-
rithm can be used. Finally, rather than relying purely on
the initial label assignment, but having a chance to consult
the original data features, as in the MRF-CSNN scheme,
gives the overall best performance among the CSNN
varieties.
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Appendix A. Relationship between the CSNN and the
probabilistic relaxation

We want to show that CSNN-based segmentation is in
fact a realization of probabilistic relaxation. It will be useful
to review comparatively the steps of the CSNN-based
algorithm and those of a probabilistic relaxation from the
literature, as detailed, for example, in Ref. [40]. Recall that
in the probabilistic relaxation method, a probability or confi-
dence vector p; = [p,-j(l),...,p,»j(N)]T, is assigned to each
pixel, each of its elements denoting the probability of that
pixel belonging to the corresponding segment. Obviously

these probabilities sum to one for each pixel, that is

S pyi) = 1.

1. The initialization step: In both the CSNN scheme and the
probabilistic relaxation the initial weights are assigned
by some clustering technique, such as histogram thresh-
olding, fuzzy c-means, Kohonen’s SOM etc.

2. Compatibility functions vs. connection weights: The idea
behind probabilistic relaxation is to reveal compatibility
between neighboring pixels, hence try to give them the
same segment label. This is carried out by using compati-
bility functions and the update rules of the confidence
vectors. The compatibility between pixels [/ and k is
measured as:

< 0 Segments S; and S; are incompatible

r(k,I) =1 =0 Segments S; and S, are independent

>0 Segments S; and S; are compatible
(AD)

The specific form of the compatibility function either is
known a priori or can be estimated from the initialization
process. On the other hand, in CSNN, this compatibility
control is carried out by using connection weights, which
impose constraints on the label map. The layers of the
CSNN, which represent the segments, are ordered to
reflect these constraints. Thus, CSNN use compatibility
scheme of the probabilistic relaxation thorough connec-
tion weights. Thus, formally they both aim for energy and
incompatibility relaxation, although they may differ in
the specific form of the functions.

3. Update rules: In both the CSNN and the probabilistic
relaxation a competition and cooperation process runs
until a steady state is reached. In the probabilistic
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(a) Original Image

(b) Fine Segmentation.
\'\"] L= 16xW, V\‘:k H= W/l6

(¢) Moderate Segmentation
Wi = W/8, Wi = 8xW

relaxation the probability updating at step » is as follows:

N
ApPy = d,-,,m[z iz (k. l>p£2,<l)] (A2)
=1

m,n,eNij

where the weight dj;,,, represent the relevance of the
contribution of a neighborhood pixel at position (m, n)
to the pixel at position (i, ). The total for this parameter
over all neighborhoods must be equal to one. In Eq. (A2)
one observes that the amount of change in the probability

(d) Coarse Segmentation
“”||_| = W/16, W| = 16xW

Fig. 16. P-CSNN segmentation in astronomy. W denotes the between-layer connection weights. Wy_ and W _y represent form-high-to-low and from-low-to-
high connection weights, respectively.

for a specific segment is calculated by using the current
probabilities of the neighbor pixels and the compatibility
between the segments. The neighborhood pixel contribu-
tions is integrated into the pixel probability via the
formula:

P (1 + Ap(0)

i (ro[1 + apY o))

PP = (A3)

~
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where the denominator is the normalizing factor. The
CSNN update rule in Egs. (2) and (3) in the text is
reminiscent of the formula in Eq. (A3). The main differ-
ence between the CSNN and the probabilistic update
schemes is that in the probabilistic relaxation, this change
is allowed to be positive for more than one segment,
while in the CSNN there is only one positive change,
all the others having to be negative. This yields the
speed up in the convergence of the CSNN.

Since both methods use the same formalism of label
initialization, pixel interaction and label updating it is con-
cluded that the CSNN performs a variety of the probabilistic
relaxation.
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