Journal Papers

1. T.Ekim and Th.V.Paschos, Approximation preserving reductions among set covering and vertex covering hierarchies via differential approximation ratio, International Journal of Computer Mathematics, 81, 5, pages 569 - 582, 2004. (SCI-E)

2. M. Demange, T.Ekim, D. de Werra, (p,k)-coloring problems in line graphs, Theoretical Computer Science, 349: 462-474, 2005. (SCI)

3. M. Demange, T.Ekim, D. de Werra, Partitioningcographs into cliques and stable sets, Discrete Optimization, 2:145-153, 2005. (SCI-E)

4. T.Ekim and D. de Werra, On split-coloring problems, Journal of Combinatorial Optimization, 10: 211-225, 2005. (SCI-E)

5. D. de Werra, T.Ekim, C.Raess, Construction of sports schedules with multiple venues, Discrete Applied Mathematics, 154:47-58, 2006. (SCI)

6. M. Demange, T.Ekim, D. de Werra, On the approximation of Min Split-coloring and Min Cocoloring, Journal of Graph Algorithms and Applications, 10(2): 297-315, 2006.

7. T.Ekim, N.V.R. Mahadev, D. de Werra, Polarcographs, Discrete Applied Mathematics, 156(10), 1652-1660, 2008. (SCI)

8. T.Ekim, P. Hell, J.Stacho, D. de Werra, Polarity of chordal graphs, Discrete Applied Mathematics, 156 (13), 2469-2479, 2008. (SCI)

9. T.Ekim, A. Geinoz, D. de Werra, Construction of balanced sports schedules using partitions intosubleagues, Operational Research Letters, 36:3, 279-282, 2008. (SCI)

10. M. Demange, T.Ekim, D. de Werra, A tutorial on the use of graph coloring models for some problems in robotics, European Journal of Operational Research, 192 (1), 41-55, 2009. (SCI-E)

11.  T.Ekim, J. Gimbel, Partitioning graphs into complete and empty graphs, Discrete Mathematics, 309 (2009), 5849-5856. (SCI)

12. T.Ekim, J. Hoang, Recognizing line-polar bipartite graphs in time O(n), Discrete Applied Mathematics 158 (2010) 1593-1598. (SCI)

13. T.Ekim, B. Ries, D. de Werra, Split-critical and uniquely colorable graphs, Discrete Mathematics and Theoretical Computer Science, 12:5 (2010), 1-24. (SCIE)

14. T.Ekim, C. Taşkın, Integer Programming Formulations for the Weighted Minimum Maximal Matching Problem, Optimization Letters, Volume 6, Issue 6 (2012), Page 1161-1171. (SCI-E)

15. T.Ekim, J. Gimbel, Some defective parameters in graphs, Graphs and Combinatorics, DOI : 10.1007/s00373-011-1111-5 Volume 29, Number 2, (2013), 213-224. (SCI-E)

16. T.Ekim, P. Heggernes, D. Meister, Polar permutation graphs are polynomial time recognizable, European Journal of Combinatorics, DOI : 10.1016/j.bbr.2011.03.031.34 (2013) 576-592 (SCI)

17. M. Bodur, T.Ekim, C. Taskin, Decomposition algorithms for solving the minimum weight maximal matching problem, Networks, Volume 62, Issue 4, Pages 273-287, December 2013, DOI: 10.1002/net.21516. (SCI)

18. M. Demange, T.Ekim, A note on the NP-hardness of two matching problems in induced subgrids, Discrete Mathematics and Theoretical Computer Science, 15:2 (2013), 233-242. (SCI-E)

19. F. Bonomo, D. Cornaz, T.Ekim, B. Ries, Perfectness of clustered graphs, Discrete Optimization, 10 (Nov 2013) 296-303. DOI: 10.1016/j.disopt.2013.07.006. (SCI-E)

20. M. Demange, T.Ekim, Efficient recognition ofequimatchable graphs, Information Processing Letters, 114 (Jan-Feb 2014), 66-71. DOI: 10.1016/j.ipl.2013.08.002. (SCI-E)

21. M. Demange, T.Ekim, C. Tanasescu, Hardness and Approximation of Minimum Maximal Matching, Int. J. of Computer Mathematics, Vol. 91, No. 8, 1635-1654, (September 2014) http://dx.doi.org/10.1080/00207160.2013.853052 (SCI-E)

22. T.Ekim, A. Erey, Block Decomposition Approach to Compute a Minimum Geodetic Set, RAIRO-Operations Research, 48:4 (June 2014), 497-507. DOI: 10.1051/ro/2014019. (SCI-E)

23. T.Ekim, M. Demange, C. Tanasescu, B. Ries, On Some Applications Of The Selective Graph Coloring Problem, European Journal of Operational Research, 240(2), (Jan 2015), 307-314. DOI: 10.1016/j.ejor.2014.05.011. (SCI-E)

24. A. Akdemir, T.Ekim, Advances on Defective Parameters in Graphs, Discrete Optimization, 16 (May 2015), 62-69. DOI:10.1016/j.disopt.2015.01.002. (SCI-E)

25. A. Boyaci, T.Ekim, M. Shalom, S. Zaks, Graphs of edge intersecting and non-splitting paths in a tree: Representations of holes Part I, Discrete Applied Mathematics, Volume 215, (31 December 2016), Pages 47-60, DOI: 10.1016/j.dam.2015.07.024. (SCI)

26. M. Demange, T.Ekim, B. Ries, On minimum and maximum selective graph coloring in several graph classes, Discrete Applied Mathematics, Volume 204, (May 2016), Pages 77-89, doi: 10.1016/j.dam.2015.10.005. (SCI)

27. A. Boyaci, T.Ekim, M. Shalom, The Maximum Cardinality Cut Problem in Co-bipartite Chain Graphs, Journal of Combinatorial Optimization, 35(1), (Jan 2018), 250-265. DOI: 10.1007/s10878-015-9963-x. (SCI-E)

28. A. Boyaci, T.Ekim, M. Shalom, S. Zaks, Graphs of Edge-Intersecting and Non-Splitting Paths, Theoretical Computer Science, 629, (23 May 2016), Pages 40-50, doi:10.1016/j.tcs.2015.10.004. (SCI)

29. C. Dibek, T.Ekim, D. Gozupek, M. Shalom, Equimatchable graphs are C2k+1-free for k >= 4, Discrete Mathematics, 339 (4 July 2016), pp. 2964-2969. doi: 10.1016/j.disc.2016.06.003

30. N. Chiarelli, C. Dibek, T. Ekim, D. Gozupek, S.Miclavic, On matching extendability of lexicographic products, RAIRO - Operations Research, 51 (2017) 857-873.doi: 10.1051/ro/2016072.

31. A. Boyaci, T.Ekim, M. Shalom, A Polynomial Time Algorithm for the Maximum Cardinality Cut Problem in Proper Interval Graphs, Information Processing Letters, 121 (May 2017) 29-33,doi: 10.1016/j.ipl.2017.01.007.

32. C. Dibek, T.Ekim, P. Heggernes, Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded, Discrete Mathematics, 340 (2017) 927-934. doi:10.1016/j.disc.2017.01.010.

33.  P. Abedin, S. Akbari, M. Demange, T. Ekim, Complexity of the improper twin edge coloring of graphs, Graphs and Combinatorics, 33:4 (July 2017) 595-615.

34. A. Boyaci, T.Ekim, M. Shalom, S. Zaks, Graphs of Edge-Intersecting and Non-Splitting One-Bend Paths in a Grid, Discrete Mathematics and Theoretical Computer Science, 19:1 (June 2017) no13.

35. Z. Deniz, T.Ekim, T. Hartinger, M. Milanic, M. Shalom, On two extensions of equimatchable graphs, Discrete Optimization, 26 (2017) 112-130.doi: 10.1016/j.disopt.2017.08.002.

36. B.Ahat, T. Ekim, C. Taskin, Integer Programming Formulations and Benders Decomposition for Maximum Induced Matching Problem, INFORMS Journal on Computing, 30(1), pp. 43--56, 2018.

37. A. Boyaci, T.Ekim, M. Shalom, S. Zaks, Graphs of edge intersecting and non-splitting paths in a tree: Representations of holes Part II, Discrete Mathematics and Theoretical Computer Science, 20:1, (Jan 2018), no2.

38.  S. Akbari, H.Alizadeh, T.Ekim, D. Gozupek, M. Shalom, Equimatchable claw-free graphs, Discrete Mathematics 341 (2018) 2859-2871.

39. T.Ekim, D. Gozupek, A. Hujdurovic, M. Milanic, On almost well-covered graphs of girth at least 6, Discrete Mathematics and Theoretical Computer Science, 20:2 (2018), 17.

40. O.Seker, T. Ekim, Z.C. Taskin, A Decomposition Approach to Solve the Selective Graph Coloring Problem in Some Perfect Graph Families, Networks, 73 (2019) 145-169. DOI: 10.1002/net.21850.

41. Z. Deniz, T. Ekim, Edge-Stable Equimatchable graphs, Discrete Applied Mathematics, Special Issue GO X, 261 (2019) 136-147.

42. T. Ekim, J. Gimbel, O. Seker, Small 1-Defective Ramsey Numbers in Perfect Graphs, Discrete Optimization, 34 (2019) 100548.

43. T. Ekim, A. Farley, A. Proskurowski, The complexity of the defensive domination problem in special graph classes, Discrete Mathematics, 343(2) (2020), 111665.

44. T. Ekim, D. Gozupek, A. Hujdurovic, M. Milanic, Mind the Independence Gap, Discrete Mathematics (2020) 111943.

45. O. Seker, T. Ekim, Z.C. Taskin, An Exact Cutting Plane Algorithm to Solve the Selective Graph Coloring Problem in Perfect Graphs, European Journal of Operations Research, 291 (1), 67-83, 2021. arxiv.

46. T. Ekim, M. Shalom, O. Şeker, The complexity of Subtree Intersection Representation of Chordal Graphs and Linear Time Chordal Graph Generation, Journal of Combinatorial Optimization, 41, 710-735, 2021. arxiv.

47. S. Bahadir, T. Ekim, D. Gozupek, Well-Totally-Dominated Graphs, Ars Mathematica Contemporanea,20 (2021) 209-222, doi:10.26493/1855-3974.2465.571.  arxiv.

48. Y.E. Demirci, T. Ekim, J. Gimbel, M.A. Yildiz, Exact Values of Defective Ramsey Numbers in Graph Classes, Discrete Optimization, 42 (2021) 100673, arxiv.

49. A. Boyaci, T. Ekim, M. Shalom, On the Maximum Cardinality Cut Problem in Proper Interval Graphs and Related Graph Classes, Theoretical Computer Science, 898, 20-29, 2022. https://doi.org/10.1016/j.tcs.2021.10.014

50. O. Seker, P. Heggernes, T. Ekim, Z.C. Taskin, Generation of random chordal graphs using subtrees of a tree, RAIRO - Operations Research, 56-2, 565-582, 2022. https://doi.org/10.1051/ro/2022027.

51. T. Ekim, A. Farley, A. Proskurowski, M. Shalom, Defensive Domination in Proper Interval Graphs, Discrete Applied Mathematics, 331 (2023) 59-69. arxiv.

52. S. Akbari, T. Ekim, A.H. Ghodrati, S. Zare, Well-indumatched trees and graphs of bounded girth, Australasian Journal of Combinatorics, 85(1) (2023), Pages 61–81 arxiv.

53. Y.E. Demirci, T. Ekim, M.A. Yildiz, Defective Ramsey Numbers and Defective Cocolorings in Some Subclasses of Perfect Graphs, Graphs and Combinatorics, (2023) 39:18 https://doi.org/10.1007/s00373-023-02612-4, https://arxiv.org/abs/2107.12031

54. A. E. Banak, C. Taskin, T. Ekim, Constructing extremal triangle-free graphs using integer programming, Discrete Optimization, 50 (2023), 100802, https://doi.org/10.1016/j.disopt.2023.100802arxiv.

55. Z. Deniz, T. Ekim, Critical Equimatchable Graphs, Australasian J of Comb., 88(2) (2024), Pages 171–193. arxiv

56. M. Ahanjideh, T. Ekim, M.A. Yildiz, Maximum size of a triangle-free graph with bounded maximum degree and matching number, Journal of Combinatorial Optimization, 47 (4), 57, 2024. arxiv